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A B S T R A C T   

Concept typicality is a key semantic dimension supporting the categorical organization of items based on their 
features, such that typical items share more features with other members of their category than atypical items, 
which are more distinctive. Typicality effects manifest in better accuracy and faster response times during 
categorization tasks, but higher performance for atypical items in episodic memory tasks, due to their distinc-
tiveness. At a neural level, typicality has been linked to the anterior temporal lobe (ATL) and the inferior frontal 
gyrus (IFG) in semantic decision tasks, but patterns of brain activity during episodic memory tasks remain to be 
understood. We investigated the neural correlates of typicality in semantic and episodic memory to determine 
the brain regions associated with semantic typicality and uncover effects arising when items are reinstated 
during retrieval. In an fMRI study, 26 healthy young subjects first performed a category verification task on 
words representing typical and atypical concepts (encoding), and then completed a recognition memory task 
(retrieval). In line with previous literature, we observed higher accuracy and faster response times for typical 
items in the category verification task, while atypical items were better recognized in the episodic memory task. 
During category verification, univariate analyses revealed a greater involvement of the angular gyrus for typical 
items and the inferior frontal gyrus for atypical items. During the correct recognition of old items, regions 
belonging to the core recollection network were activated. We then compared the similarity of the representa-
tions from encoding to retrieval (ERS) using Representation Similarity Analyses. Results showed that typical 
items were reinstated more than atypical ones in several regions including the left precuneus and left anterior 
temporal lobe (ATL). This suggests that the correct retrieval of typical items requires finer-grained processing, 
evidenced by greater item-specific reinstatement, which is needed to resolve their confusability with other 
members of the category due to their higher feature similarity. Our findings confirm the centrality of the ATL in 
the processing of typicality while extending it to memory retrieval.   

1. Introduction 

Semantic and episodic memory are two declarative long-term 
memory systems known to interact very closely (Tulving, 1972, 1985). 
The former holds our semantic knowledge about the world, abstracted 
away from our experiences (e.g., the meaning of words) and applied to a 
variety of contexts. The latter instead refers to episodic events personally 
experienced in the past, which emerges from the binding of information 
that co-occurred in the specific context where the event took place. Even 
though the independence of these two systems is supported by neuro-
imaging and clinical evidence (Tulving, 1972, 1985), they also 
demonstrate an interplay. Semantic processing may, for example, 

enhance episodic retrieval (e.g., levels of processing and semantic con-
gruency effects, Bartlett, 1932; Craik and Lockhart, 1972) as well as 
hinder episodic remembering (e.g., giving rise to false memories; see 
Greenberg and Verfaellie, 2010 for review). Thus, the idea of a neat 
separation between episodic and semantic systems has been recently 
questioned, because these two systems seem to be supported by partially 
overlapping brain networks and common retrieval processes (Greenberg 
and Verfaellie, 2010; Irish and Vatansever, 2020; Renoult et al., 2019). 

One of the most integrative theoretical accounts of semantic mem-
ory, the Hub-and-Spoke model (Patterson et al., 2007; Ralph et al., 
2017), holds that semantic categories arise from intrinsic regularities 
among conceptual features of objects. In particular, the anterior 
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temporal lobe (ATL), which includes the temporal gyri, temporal pole, 
rhinal cortices, fusiform and parahippocampal gyri (Bonner and Price, 
2013), works as a semantic hub where conceptual information is amo-
dally integrated and abstractions or generalizations across categories are 
formed. Yet, it remains unclear how the natural variability in the con-
ceptual features of items of the same category is represented by the 
human brain, with some authors relating it to their typicality (Santi 
et al., 2016; Woollams, 2012; Woollams et al., 2008). Indeed, a key 
property of concepts is their graded category membership, according to 
which some members are more typical, or a better exemplar of the 
category than others (Rosch and Mervis, 1975). Within a given category 
(e.g., bird), a typical item (e.g., sparrow) shares many features with the 
other members of its category while, conversely, an atypical item (e.g., 
penguin) is characterized by more idiosyncratic features, making atyp-
ical items more distinctive within their category. Hence, according to 
some authors, typicality reflects the conceptual structure as expressed 
by the co-occurrence of features between concepts within a given 
category (Raposo et al., 2012). 

Behaviorally, typical items are systematically associated with faster 
response times and lower error rates than atypical items in naming 
(Holmes and Ellis, 2006) and category verification tasks (Kiran et al., 
2007). However, at a neural level, results are more inconsistent, which 
may be partly due to the different tasks used (i.e., naming, categoriza-
tion, feature verification) or the stimuli adopted (words vs. pictures; e.g., 
see Davis and Poldrack, 2014; Iordan et al., 2016; Li et al., 2021). On one 
hand, studies on patients with semantic dementia (SD), presenting with 
ATL atrophy (Woollams et al., 2008), and with healthy controls 
following Transcranial Magnetic Simulation (TMS) on the ATL (Wool-
lams, 2012), showed that disruption of the ATL leads to impairments in 
naming tasks for more atypical concepts, which aligns with fMRI studies 
on healthy participants showing increased activation in the ATL with 
decreasing item typicality during a category verification task (Santi 
et al., 2016). On the other hand, studies using Representational Simi-
larity Analysis (RSA, Kriegeskorte et al., 2008) demonstrated that in the 
ATL region, the semantic similarity between concepts (as measured in 
terms of shared and distinctive feature norms) matches voxel similarity 
patterns elicited by objects processed semantically (Borghesani et al., 
2016; Bruffaerts et al., 2013; Chen et al., 2016; Clarke, 2020; Clarke and 
Tyler, 2014; Fairhall and Caramazza, 2013; Liuzzi et al., 2015; Martin 
et al., 2018). Taken together, these results support the idea that concepts 
are processed and represented in the ATL through the integration of 
their constituting features, both shared and distinctive ones (Bruett 
et al., 2020; Bruffaerts et al., 2019; Coutanche and Thompson-Schill, 
2015). 

Beyond the ATL, researchers have identified a supramodal left- 
lateralized network, comprising the posterior middle/inferior tempo-
ral gyrus, angular gyrus (AG), ventral temporal cortex, precuneus (PC), 
and lateral and dorsomedial prefrontal cortex, representing semantic 
content during a typicality judgement task (Fairhall and Caramazza, 
2013). In addition, imaging work on semantic categorization of items 
varying in typicality has revealed increased activation in the inferior 
frontal gyrus (IFG) for more atypical items, whereas typical items dis-
played enhanced activation in the inferior parietal and posterior tem-
poral regions (Santi et al., 2016). These findings are corroborated by a 
recent fMRI study demonstrating that, in addition to the ATL, the left 
IFG was significantly more recruited during the processing of distinctive 
(e.g., has a mane) than shared features (e.g., has four legs) of concepts, 
whereas the right AG revealed the opposite pattern (Reilly et al., 2019). 
Together, these results suggest that processing atypical items, which 
possess more distinctive features, requires greater semantic control 
possibly due to the lower feature co-occurrence (Santi et al., 2016). 
Conversely, inferior parietal regions, including the AG, are engaged in 
similarity-based categorization (Grossman et al., 2002), and possibly 
function as another cross-modal semantic hub, integrating semantic 
features within a single concept or across concepts to relate with broader 
memory and cognitive processes (Bonner et al., 2013; Bonnici et al., 

2016; Farahibozorg et al., 2022; Seghier, 2013). 
Understanding how the organization of semantic memory influences 

episodic memory mechanisms remains of key concern, especially 
considering that little is yet known about the role that typicality plays in 
it. Only a few studies have explored this issue and they consistently 
showed that atypical items are associated with better recognition 
memory than typical ones, and this difference may be attributed to 
increased recollection rather than familiarity (Alves and Raposo, 2015; 
Souza et al., 2021). One interpretation of this effect is that atypical items 
are more distinctive, because of their idiosyncratic features compared to 
other members of their category (e.g., a penguin among typical birds; 
Hunt, 2013; Tulving and Rosenbaum, 2006), which may have beneficial 
effects on episodic memory encoding (von Restorff, 1933). The impact of 
typicality on subsequent memory has also been studied in the context of 
expectancies, or predictions. In the presence of a category-cue, expec-
tations would build up towards typical items, while atypical items, that 
are unexpected, elicit a mismatch between the presented stimulus and 
the prediction (Federmeier et al., 2010). Such mismatch detection can 
benefit subsequent memory (Federmeier et al., 2007; but see Höltje 
et al., 2019). 

Whether concept typicality affects the neural correlates of successful 
memory retrieval has never been explored. To address this question, we 
used fMRI in both a semantic categorization task during encoding of 
typical and atypical items and a subsequent recognition memory task. 
We first conducted contrast analysis to inspect the effects of typicality on 
the neural bases of semantic category verification. We anticipated that 
the categorization of atypical items should be associated with greater 
ATL and IFG activation, while for typical items, we expected greater 
engagement of the right inferior parietal lobe including the AG (Reilly 
et al., 2019; Santi et al., 2016; Woo et al., 2014). Next, we explored if 
typicality impacts concept recognition, by contrasting old vs. new items 
that were typical or atypical members of the category. In complement, 
we conducted RSA to test if the neural patterns of semantic processing at 
encoding were reinstated differently for typical and atypical items 
during retrieval, both at the whole-brain level, and using Region of In-
terest (ROI) analysis focusing on the ATL. One hypothesis is that atypical 
concepts (relative to typical ones) will reveal higher similarity from 
encoding to retrieval due to their greater distinctiveness which results in 
greater item-specific reinstatement. Alternatively, since typical concepts 
are more similar to other members of the category and hence more 
confusable, their correct retrieval may involve fine-grained processing, 
which could instead lead to greater item-specific reinstatement, which 
we expect to occur in the left ATL. 

2. Methods 

2.1. Participants 

26 young healthy adults took part in this fMRI study (20 females, M 
= 21.46 years old (SD = 3.57), range = 18–29). All subjects were right- 
handed, native speakers of Portuguese, and had no history of neuro-
logical impairment or head injury. Participants took part in the study in 
exchange for course credits. They all gave informed written consent to 
the experimental procedure, which was approved by the ethics com-
mittee of Faculdade de Psicologia, Universidade de Lisboa. 

2.2. Materials and procedure 

We selected 160 words from 10 categories, so to have 16 items per 
category (fruit, vegetable, bird, insect, mammal, vehicle, musical in-
strument, clothing, weapon, kitchen utensil). Half of the words consisted 
of typical members of their category, while the other half were atypical 
members of their category. Typicality was determined in a previous 
pretest (see Santi et al., 2016) with an independent group of participants 
who judged how typical an exemplar for a given category is on a 7-point 
scale (1 = very atypical to 7 = very typical). 

E. Delhaye et al.                                                                                                                                                                                                                                 



Neuropsychologia 184 (2023) 108529

3

During encoding, participants saw 80 words (40 typical and 40 
atypical) for which they were instructed to perform a category verifi-
cation task. Half of the words were presented with the actual category 
they belong to, so that they were part of a “congruent” condition (20 
typical, 20 atypical), while the other half were presented with an 
incongruent category (20 typical, 20 atypical). So, our design included 4 
conditions: congruent typical, congruent atypical, incongruent typical 
and incongruent atypical. Items in the typical and atypical conditions 
differed in terms of typicality ratings (t(17.19) = 42.92, p < .001). All 
conditions were matched in familiarity (all ps > .30) and number of 
letters (all ps > .29; see Table 1). To respect the matching of these 
variables across conditions, items could not be counterbalanced across 
conditions. Each trial began with the presentation of a fixation cross for 
500 ms followed by the category cue (prime) for 750 ms. The prime was 
followed by a 200 ms blank screen, and the target concept was then 
presented for 2000 ms, during which participants had to perform the 
category verification task, by pressing the left index finger for “yes” and 
the left middle finger for “no”. The target was followed by a jittered 
1500–3000 ms blank screen, ending the trial (see Fig. 1). 

During retrieval, participants were presented with the 80 words they 
saw during encoding, and an additional 80 new words, half of which 
were typical members of their category, and the other half, atypical 
members. New words were matched with the old words in terms of the 
category they belong to, typicality ratings, familiarity ratings and 
number of words (ps > .1 in all cases; see Table 1). Participants were 
asked to determine whether they saw the item previously in a yes-no 
recognition task by pressing the same keys as during encoding, and 
then to judge the confidence of their answer on a 4-point scale (using the 
left hand). Each trial started with a fixation cross presented for 500 ms 
followed by the probe (target concept) for 2500 ms, during which par-
ticipants had to determine whether the item was old or new. The probe 
was followed by a 200 ms blank screen, after which the screen displayed 
the confidence judgement scale for 2000 ms during which participants 
were asked to provide their confidence judgement. The trial ended with 
a jittered 2000–3500 ms blank screen. The order of presentation of the 
words was randomized across participants. Both the category verifica-
tion task and the recognition phases were performed in the scanner. See 
Fig. 1 for an example of the design of the tasks. 

2.3. MRI data acquisition and preprocessing 

Scanning was conducted at Sociedade Portuguesa de Ressonância 
Magnética on a 3 T Philips MR system (Philips Medical Systems, Best, 
NL) using a standard head coil. Functional data were acquired by using 
an echo-planar sequence (TR = 2000 ms, TE = 23 ms, FA = 90◦, FOV =
230 × 230 mm, 34 bottom-up interleaved slices parallel to the AC-PC 
line, with 1.8 × 1.8 × 3.5 mm voxels size, matrix size = 116 × 115). 
Acquisition covered the entire brain. Before functional data collection, 
three dummy volumes were discarded to allow for T1 equilibrium. High- 
resolution T1-weighted anatomical images were acquired for visuali-
zation and spatial processing of the fMRI (coregistration and 
normalization). 

The fMRI data were preprocessed and statistically analyzed using 
Statistical Parametric Mapping toolbox (SPM12, Wellcome Institute of 
Cognitive Neurology, www.fil.ion.ucl.ac.uk) within Matlab (version 

2015b, Mathworks Inc., Sherborn MA, USA). First, we corrected for 
differences in slice acquisition timing by resampling all slices to the 
middle slice. These data were then corrected for motion across all ses-
sions by aligning to the mean of the images collected after the first 
realignment. The mean resliced functional data were coregistered to the 
participants’ T1. The T1 was then segmented in order to obtain the 
normalization parameters. Voxel size was resampled into isotropic 2 × 2 
× 2 mm. The normalization parameters were then applied to the pre-
processed functionals. Normalized functional data were then spatially 
smoothed with an isotropic Gaussian kernel of 8 mm FWHM. 

2.4. Behavioral data analyses 

Data from the encoding category verification task were analyzed 
using a repeated-measures ANOVA with congruency (congruent, 
incongruent) and typicality (typical, atypical) as within-subject vari-
ables on the proportion of correct answers and on the response time for 
correct trials. As for the recognition task, we ran repeated measures 
ANOVAs on the hit rates, hits with high confidence responses only (level 
4), false alarm rates (FAs), and hits-FAs global accuracy measure. The 
repeated measures ANOVAs on the hit rates and the hits-FAs accuracy 
measure included congruency between the target and the prime during 
the encoding category-verification task (congruent, incongruent) as well 
as typicality (typical, atypical) as within-subject factors. The repeated- 
measures ANOVA on the FAs included typicality (typical, atypical) as 
the within-subject factor. 

2.5. fMRI data analyses 

2.5.1. Univariate analyses 
For each participant, BOLD responses were modelled using the 

General Linear Model (GLM) implemented in SPM12. In the category 
verification task, regressors of interest were modelled as epochs that 
began when the prime (category cue) was presented and finished before 
the onset of the next prime (4.95–6.45 s). The design matrix included 4 
regressors: typical targets that were congruent with the prime, atypical 
targets that were congruent with the prime, typical targets that were 
incongruent with the prime, atypical targets that were incongruent with 
the prime. 

The analysis of the recognition memory task focused on trials asso-
ciated with a correct response (i.e., accurate recognition) as several 
studies have reported neural differences as a function of retrieval success 
(e.g., Herron et al., 2004). Regressors of interest were modelled as 
epochs that began with the onset of the probe and finished before the 
onset of the next probe (7.2–8.7 s). The design matrix included 6 

Table 1 
Descriptive statistics (mean, and SD in brackets) of the stimuli characteristics.   

Number of 
letters 

Familiarity 
(1–7) 

Typicality 
(1–7) 

Typical Congruent 6.65 (2.28) 4.20 (1.03) 6.68 (0.20) 
Incongruent 6.10 (2.07) 4.16 (1.41) 6.70 (0.22) 
New 6.42 (1.65) 4.02 (1.07) 6.54 (0.30) 

Atypical Congruent 6.45 (1.96) 3.93 (0.96) 4.08 (0.93) 
Incongruent 7.00 (2.90) 4.46 (1.15) 4.10 (0.96) 
New 7.02 (3.47) 4.33 (1.17) 4.12 (1.08)  

Fig. 1. Experimental task. Top: category verification task for typical and 
atypical items, bottom: recognition memory task where old congruent items 
from the category verification task were interspersed among new typical and 
atypical items from the same categories. 
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regressors: old items from the congruent typical condition, old items 
from the congruent atypical condition, new typical items, new atypical 
items, old items from the incongruent condition and incorrect responses. 
We included only one regressor for all incongruent trials as this condi-
tion led to relatively low levels of recognition accuracy (incongruent 
typical: M = 0.56, SD = 0.18; incongruent atypical: M = 0.64, SD =
0.17), with lower confidence in producing correct responses (see 
Behavioral results section). Hence, there were not enough correct trials 
to conduct further analyses on these items. Each design matrix included 
realignment as nuisance parameters to model movement-related 
variance. 

At the individual subject level (first level), we generated a contrast 
for each condition of interest versus rest, used as a baseline. The contrast 
images were then submitted to a second-level analysis corresponding to 
a random effects model in which subjects were considered as random 
variables, using factorial ANOVAs in SPM12, and follow-up pairwise 
comparisons between conditions were implemented using two-sample t- 
tests. Data from the category verification task were analyzed in a 
factorial ANOVA, with congruency (congruent, incongruent) and typi-
cality (typical, atypical) as factors. As for the recognition task, we con-
ducted a factorial ANOVA, with probe status (old, new) and typicality 
(typical, atypical) as factors. 

The significance voxel-level threshold was set at p < .001, uncor-
rected, with clusters significant at p < .05 (FWE cluster corrected), to 
correct for multiple comparisons (following recommendations from 
Woo et al., 2014). 

2.5.2. Multivariate analyses 
Beta extraction. The preprocessed unsmoothed fMRI images were 

used to estimate the beta for each trial using the general linear model 
framework. For each participant and separately for encoding and 
retrieval, a GLM was constructed that included separate regressors for 
each individual trial, along with regressors indexing head motion as 
nuisance parameters. Each trial was modelled as a 0-duration event (see 
Folville et al., 2020; Wing et al., 2015) and was convolved with a ca-
nonical hemodynamic response function. The resulting beta estimates 
for each trial were then used for subsequent multivariate searchlight 
analyses using the CoSMoMVPA toolbox (Oosterhof et al., 2016). 

Searchlight analyses. A whole-brain searchlight approach (Krie-
geskorte et al., 2008) was used to calculate the Encoding-Retrieval 
Similarity (ERS) at the item level by matching individual trials pre-
sented at retrieval to their identical counterparts at encoding (e.g., 
“flute” encoding x “flute” retrieval), and at the set level by matching an 
individual trial at retrieval to all other stimuli from encoding (e.g., 
“piano” encoding x “flute” retrieval). For both item-level and set-level 
pairs, only old items were considered. The set level refers to the gen-
eral reactivation of concept processing, while the item level refers to the 
specific reactivation of a given concept. See Fig. 8D for an illustration of 
the ERS matrix. 

For item-level ERS, a 3 × 3 x 3 voxels cube around each voxel of each 
trial was extracted (from beta maps during encoding and retrieval) and 
vectorized. Then, the encoding and retrieval vectors were correlated and 
the resulting value (Fisher-transformed Pearson’s r, our measure) was 
placed in the original voxel location. This process was repeated for all 
brain voxels for every item-level pair (mean number of item-level pairs 
by subject = 32.82, SD = 3.79 (because incorrectly identified “old” items 
were not included in the analysis)). In the set-level ERS, the procedure 
was similar except that the ERS value at each voxel for a given retrieval 
trial was the average of many set-level pairs. Specifically, for each 
retrieval trial (e.g., flute), ERS was calculated separately for all encoding 
trials from the set (e.g., piano x flute, sparrow x flute, coat x flute, etc.; 
mean number of pairwise comparisons by subject in the set level =
512.79, SD = 115.09) and these different ERS values were averaged for 
each voxel to create the whole-brain similarity volume for that retrieval 
trial (Wing et al., 2015). So, for each retrieval trial, we had one value of 
item-level ERS, and one value of set-level ERS, in each brain voxel. 

Statistical analyses. After calculation of item-level and set-level ERS 
volumes for each retrieval trial, ERS volumes were averaged across trials 
from the same condition (typical or atypical) at the subject-level, so that 
each subject ended up with 4 maps: item-level typical, item-level atyp-
ical, set-level typical, and set-level atypical. Then, at the group level, we 
ran a full factorial design in SPM12. We conducted a 2 typicality 
(typical, atypical) by 2 levels (item, set) factorial ANOVA on ERS maps. 
Following the same criteria of the univariate analysis, we restricted the 
analysis to items that were presented with a congruent category cue 
during learning and accurately recognized at test (mean number of tri-
als, typical = 15.61, atypical = 17.22). We used a cluster-defining 
threshold of p < .001 with clusters significant at p < .05 (FWE cluster 
corrected, Bird et al., 2015; Oedekoven et al., 2017). 

In addition to the whole brain analysis, we ran a supplementary ROI 
analysis that focused specifically on the left ATL since, as discussed at 
the outset, the ATL is a core region in processing item typicality and is 
known to be susceptible to signal distortion and signal loss in fMRI 
because of its position near the sinuses (Olman et al., 2009; Visser et al., 
2010). For that, we used the Marsbar toolbox in SPM (Brett et al., 2002), 
and defined a 10 mm-radius sphere around coordinates reported in a 
previous independent study assessing ERS using an ATL ROI at − 41, 8, 
− 17 (Bruett et al., 2020; see also Coutanche and Thompson-Schill, 
2015). The same 2 typicality (typical, atypical) by 2 levels (item, set) 
factorial ANOVA was run on ERS maps within this ROI. 

3. Results 

3.1. Behavioral results 

3.1.1. Category verification task 
The repeated measures ANOVA on the proportion of correct answers 

with congruency (congruent, incongruent) and typicality (typical, 
atypical) as within-subject factors was characterized by a main effect of 
congruency, F(1,25) = 31.79, p < .001, η2

p = .56, with better perfor-
mance for incongruent than congruent targets. There was also a main 
effect of typicality, F(1,25) = 43.76, p < .001, η2

p = .64, with more ac-
curate categorization of typical than atypical items. The congruency ×
typicality interaction was also significant, F(1,25) = 64.43, p < .001, η2

p 
= .72, according to which, for the incongruent condition, there was no 
difference in categorization accuracy between typical and atypical items 
(p = 1.00, Bonferroni post-hoc test), while in the congruent condition, 
categorization was significantly better for the typical than atypical items 
(p < .001) (see Fig. 2). 

Regarding response times, we found a main effect of typicality, F 
(1,25) = 57.29, p < .001, η2

p = .68, with typical items leading to faster 
responses than atypical items. There was no main effect of congruency, F 
(1,25) = 0.83, p = .37, η2

p = .03, but there was a significant interaction 
between congruency and typicality, F(1,25) = 25.00, p < .001, η2

p = .48, 
showing no difference in response time between typical and atypical 
items in the incongruent condition (p = .41), while typical items led to 
faster response times than atypical items in the congruent condition (p 
< .001). 

3.1.2. Recognition memory task 
The ANOVA on hit rates with congruency (congruent, incongruent) 

and typicality (typical, atypical) as within-subject variables revealed 
that congruency at encoding impacted subsequent recognition, with 
higher hit rates for items that were congruent with the presented cate-
gory than incongruent ones, F(1,25) = 80.19, p < .001, η2

p = .76. There 
was also a main effect of typicality, with higher hit rates for atypical 
than typical items, F(1,25) = 11.84, p = .002, η2

p = .32. The interaction 
between congruency at encoding and typicality was not significant, F 
(1,25) = 0.01, p = .95, η2

p = .01. The same analysis on high confidence 
responses only (level 4 of confidence) revealed the same pattern of re-
sults, with the main effect of congruency showing more hits for 
congruent than incongruent items, F(1,25) = 171.45, p < .001, η2

p = .87, 
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a main effect of typicality with more high confidence hits for atypical 
than typical items, F(1,25) = 48.81, p < .001, η2

p = .66, and no inter-
action between congruency and typicality, F(1,25) = 0.01, p = .95, η2

p =

.01 (Table 2). There was a significantly greater proportion of false 
alarms in the typical than atypical condition, F(1,25) = 4.74, p = .04, η2

p 
= .16. Finally, the ANOVA on the global performance index of Hits-FAs 
was characterized by the main effect of congruency at encoding, with 
better memory performance for items that were congruent than incon-
gruent with the category at encoding, F(1,25) = 80.19, p < .001, η2

p =

.76, and a main effect of typicality, with overall better recognition 
memory performance for atypical than typical items, F(1,25) = 20.43, p 
< .001, η2

p = .45. The interaction was not significant, F(1,25) = 0.01, p =
.95, η2

p = .01 (see Fig. 3). 

3.2. Univariate fMRI results 

3.2.1. Category verification task 
The factorial analysis showed a main effect of congruency such that 

items that were incongruent with the category (compared to congruent 
ones) elicited greater activation in the left postcentral gyrus and left 
middle temporal gyrus as well as in the right precuneus and the right 
angular gyrus. The main effect of typicality revealed greater activity for 
the typical than the atypical items in the bilateral angular gyrus, right 
middle frontal gyrus, medial prefrontal cortex and left precuneus, while 
the activation was greater for atypical than typical items in the left 
opercular part of the inferior frontal cortex. The congruency by typi-
cality interaction revealed greater activation in the bilateral thalamus 
and bilateral precuneus for categorizing typical items compared to 
atypical items in the congruent condition, with no differences in typi-
cality for the incongruent condition (Table 3 and Figs. 4 and 5). 

3.2.2. Recognition memory task 
During retrieval, old items relative to new items engaged more 

activation in the bilateral angular gyrus, left precuneus, bilateral middle 
temporal gyrus, left temporal pole, medial prefrontal cortex and right 
postcentral gyrus. In contrast, activation in the left supramarginal gyrus 
and right superior parietal lobule was greater for new than old items. No 
region survived the statistical threshold of significance for the typicality 

contrast or the interaction between memory status and typicality 
(Table 3, and Figs. 6 and 7). 

3.3. Representational similarity analyses 

We conducted a factorial ANOVA on ERS values maps with typicality 
(typical, atypical) and level (item, set) as factors. Results for the contrast 
[(typical_item)-(typical_set)>(atypical_item)-(atypical_set)] yielded a 
significant interaction in the left precuneus, left nucleus accumbens, 
right lingual gyrus, and right thalamus. This interaction showed that, in 
these regions, item values were higher than set values for typical items, 
but not for atypical items, suggesting that the reinstatement of item- 
specific patterns of brain activity during retrieval was only observed 
for typical items (Fig. 8A and B). The reverse contrast [(atypical_item)- 
(atypical_set)>(typical_item)-(typical_set)] did not show any clusters 
above the significance threshold. 

Finally, the same analysis within our ROI in the ATL showed a sig-
nificant interaction reflecting reinstatement for typical items, but not for 
atypical ones (Fig. 8C). 

4. Discussion 

Despite the importance of concept typicality in the organization of 
semantic memory, and the influence semantics bears on episodic 
memory, still little is known about how typicality influences episodic 
memory and what are its neural correlates. Our study examined the 
neural correlates associated with item typicality during a semantic 
category verification task and a subsequent episodic recognition task, 
and investigated the similarity in the patterns of activation associated 
with the reinstatement of typical and atypical items from encoding to 
retrieval. 

4.1. Semantic typicality effects 

Behaviorally, the results of this study show that typical items are 
categorized better and faster than atypical items, particularly in the 
congruent condition, i.e. when the item belongs to the presented cate-
gory, which is in line with previous literature (Kiran et al., 2007). This 

Fig. 2. Accuracy (left) and response times for correct trials (in ms, right) in the category verification task for congruent and incongruent trials across conditions 
of typicality. 

Table 2 
Proportions of hits and FAs across confidence ratings.   

Confidence 1 Confidence 2 Confidence 3 Confidence 4 

Typical Atypical Typical Atypical Typical Atypical Typical Atypical 

Hits - congruent 0.01 0.01 0.04 0.04 0.14 0.09 0.57 0.70 
Hits - incongruent 0.02 0.01 0.09 0.06 0.16 0.14 0.29 0.42 
False alarms 0.02 0.01 0.07 0.03 0.06 0.05 0.03 0.05  
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indicates that the greater number of features typical items share, 
compared to atypical items, benefits semantic categorization. These 
behavioral effects were accompanied by greater activation for typical 
items in the bilateral AG, right frontal regions and the left precuneus. 
Activation was instead greater for atypical than typical items in the left 

IFG. 
Contrary to most studies, we did not find semantic typicality effects 

in the ATL (Santi et al., 2016; Woollams, 2012; Woollams et al., 2008). 
Yet, we observed typicality effects in this region during reinstatement of 
encoding patterns at retrieval, leading us to believe that the ATL was not 
insensitive to typicality. This result is interpreted more thoroughly 
below. 

Beyond the ATL, a greater activation for atypical than typical items 
was found in the left IFG, while the opposite was found in the right 
middle frontal gyrus and the bilateral precuneus, replicating Santi 
et al.’s (2016). In addition, our study revealed significant recruitment of 
the right AG during the processing of typical items, corroborating Reilly 
et al.’s (2019) results of sensitivity to feature distinctiveness in the left 
IFG, and to feature sharedness in the right AG (though results from 
Reilly et al. did not survive multiple comparisons correction). The 
involvement of the IFG in the semantic processing of atypical items 
supports the hypothesis that this region plays a role in selecting and 
controlling such information, which is necessary to correctly categorize 
atypical items due to the lower number of features they share (Badre 
et al., 2005; Marques, 2007). Besides, distinctive features of an atypical 
item must be suppressed to decide if it belongs to the category (Santi 
et al., 2016). In addition, our results are consistent with the idea that the 
AG is implicated in semantic processing, possibly working as a 
cross-modal semantic hub, binding the features commonly associated 
with typical concepts (Bonner et al., 2013; Seghier, 2013). 

4.1.1. Episodic old/new effects 
Turning to the recognition memory task, correct recognition of old 

items relative to new ones involved an important network of regions 
belonging to the core recollection network (i.e., the left PC, bilateral AG, 
right middle temporal gyrus and medial prefrontal cortex (mPFC)), 
which is a content-independent network engaged when a retrieval cue 
elicits recollection and known to mediate the successful retrieval of 
episodic memories (Rugg and Vilberg, 2013). In addition, more recent 
fMRI studies have consistently shown that these regions track the 
strength or precision of recollection based on the richness of memory 
representations (Sreekumar et al., 2018), through vividness ratings 
(Richter et al., 2016; St-Laurent et al., 2015; Tibon et al., 2019), 
remember judgments (Wang et al., 2016), confidence judgments (Qin 
et al., 2011), metacognitive decisions (Baird et al., 2013), 
context-dependent retrieval (Bonnì et al., 2015), as well as mental im-
agery processes accompanying episodic memory retrieval (Gardini et al., 
2006). 

Interestingly, recognition of old items recruited the left temporal 
pole and bilateral middle temporal gyrus, two regions that are consid-
ered as part of the ATL (Bonner and Price, 2013), and thus, a key hub in 

Fig. 3. Proportion of hits (left), false alarms (FAs; middle), and a global index of recognition memory (hits minus FA rates; right) across conditions.  

Table 3 
Univariate analyses: Peak coordinates of the significant clusters observed in the 
category verification and recognition memory tasks.   

Region 
hemisphere 

MNI coordinates F- 
value 

k 

x y z 

Category verification task 
Main effect of congruency 
Middle temporal 

gyrus 
L − 50 − 50 22 23.08 276 

Precuneus R 6 − 54 34 22.49 648 
Postcentral gyrus L − 34 − 28 64 21.21 82 
Angular gyrus R 48 − 54 24 17.96 138 
Main effect of typicality 
Middle frontal gyrus R 32 38 44 34.94 225 
Precuneus L − 16 − 68 22 32.05 2932 
Angular gyrus R 48 − 50 18 30.81 1777 
Opercular inferior 

frontal gyrus 
L − 44 24 20 25.05 331 

Angular gyrus L − 54 − 60 22 19.52 146 
Medial prefrontal 

cortex 
R 4 52 − 8 17.99 88 

Congruency × typicality interaction 
Precuneus R 10 − 46 48 31.46 389 
Thalamus L − 10 − 16 16 23.70 128 
Precuneus L − 20 − 62 24 20.93 190 
Thalamus R 8 − 2 16 20.18 120  

Recognition memory 
Main effect of old/new status 
Angular gyrus L − 38 − 72 36 48.69 1540 
Precuneus L − 8 − 64 28 44.95 3477 
Middle temporal 

gyrus 
R 66 − 36 − 12 28.24 128 

Angular gyrus R 38 − 70 46 25.27 569 
Supramarginal gyrus L − 34 − 38 40 24.04 170 
Medial prefrontal 

gyrus 
R 6 46 10 21.85 807 

Middle temporal 
gyrus 

L − 64 − 38 − 10 20.35 95 

Angular gyrus R 54 − 58 20 20.24 178 
Temporal pole L − 24 64 10 19.29 123 
Postcentral gyrus R 28 − 42 44 19.16 168 
Superior parietal 

lobule 
R 18 − 64 54 18.01 79  
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Fig. 4. Significant activation clusters in the category verification task. Heatmap values reflect BOLD signal response.  
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Fig. 5. Contrast estimates in significant clusters of the A) typicality contrast, and B) interaction between typicality and congruency, in the category verification task.  

Fig. 6. Clusters showing significant activations in the old/new contrast of the recognition memory task. Heatmap values reflect BOLD signal response.  
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the semantic network. These results may suggest that the ATL is 
involved in the processing and retrieval of object concepts (regardless of 
their typicality). The PC, AG and mPFC are thought to play a role in 
post-retrieval monitoring processes, assessing the accuracy in attrib-
uting an experience to the past (mPFC) and the strength of recollection 
(AG), thus possibly contributing to the production of confidence ratings 
(Baird et al., 2013; Qin et al., 2011; Rugg and Vilberg, 2013; Sreekumar 
et al., 2018). 

4.1.2. Episodic typicality effects 
Behaviorally, we found greater recognition accuracy for atypical 

than typical items, and higher confidence judgments in their correct 
recognition, which is in line with the existing literature (Alves and 
Raposo, 2015; Souza et al., 2021). Contrary to the semantic category 
verification task, this suggests that the higher number of shared features 
in typical items hampered their recognition, possibly because of the 
inherent confusability of typical items, i.e., they share more features. 
Indeed, the distinctiveness of atypical items led to a higher recognition 
rate (hits), while typical items led to greater false alarm rates, possibly 
due to their greater confusability. Yet, these behavioral differences were 
not associated with different patterns of neural activation in the uni-
variate analyses, although they were associated with differences in their 
reinstatement patterns, as assessed through ERS analyses. Indeed, one 
advantage of RSA-based analysis is that it treats all items in the design 

individually before averaging them, thereby providing finer insights on 
their relationships and associated patterns of activation, rather than 
contrasting items grouped by condition as classically done in univariate 
analysis (Dimsdale-Zucker and Ranganath, 2018). 

We found greater reinstatement from encoding to retrieval for 
typical than atypical items in the left accumbens, left PC, right lingual 
gyrus and right thalamus. These results favor the idea that typical items 
which share more features and are so more confusable, require greater 
reinstatement to reach successful retrieval. Presumably, reinstatement 
helps to overcome the interference arising from distractors with whom 
typical items share many features. Interestingly, reactivation of the left 
PC is in line with the role of this region in both episodic and semantic 
processing (Binder et al., 2009) and more specifically its function in 
coding conceptual representations. Notably, Fairhall and Caramazza 
(2013) and Liuzzi et al. (2020), showed that, in a typicality judgement 
task, semantically more similar categories also display more similar 
neural patterns in the PC, which makes it a candidate region for the 
supramodal representation of the conceptual properties of objects. We 
extend this effect to retrieval, by showing greater reinstatement of se-
mantic encoding processes for typical items which are conceptually 
more similar than atypical objects. Yet, here, contrary to previous 
studies, the PC showed similarity patterns not at the category-level, but 
at the item-level. So, the role of the PC in reinstating conceptual pro-
cessing during episodic decisions remains open and needs to be explored 

Fig. 7. Contrast estimates in significant clusters of the old/new contrast in the recognition memory task.  
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further in future research. 
Importantly, our ROI analysis showed evidence for reinstatement in 

the left ATL, which is thought to be a central hub integrating features 
into complex representations of objects (Bruett et al., 2020; Bruffaerts 
et al., 2019; Coutanche and Thompson-Schill, 2015). This result cor-
roborates extensive literature showing links between items similarity, as 
indexed by the features they share or make them distinctive, and the 
similarity of activation patterns in the ATL (Bruffaerts et al., 2013; Chen 
et al., 2016; Clarke, 2020; Clarke and Tyler, 2014; Fairhall and Car-
amazza, 2013; Liuzzi et al., 2015; Martin et al., 2018). This result seems 
to be robust across different types of processes, as long as they require 
fine-grained representations, i.e., from semantic decisions to episodic 
discrimination like in this task. 

4.1.3. Limitations 
Reinstatement from encoding to retrieval, however, in our case, also 

comes with a limitation, which is that the task performed differs, from 
category verification during encoding, that might require greater pro-
cessing of shared features, to memory discrimination, which might rely 
more heavily on distinctive features (cf. semantic control, Ralph et al., 
2017). It is thus possible that participants did not reinstate the same 
processes from encoding to retrieval, and this might have impacted our 
results through decreased similarity of activations between encoding 
and retrieval. In the same vein, because the tasks differed from encoding 
to retrieval, trials from both tasks did not present the same structure (e. 
g., presence vs. absence of a category cue; presence vs. absence of con-
fidence rating), which might also have diminished ERS. Future studies 
should explore how the processing demands of the encoding and 
retrieval tasks (while following an identical trial structure) impact 
reinstatement, especially for atypical items, for which we were not able 
to show evidence of reinstatement. 

5. Conclusion 

To conclude, item typicality influences category verification through 
differential activations in IFG and AG consistent with prior work. 
Furthermore, item typicality modulates episodic memory through dif-
ferential patterns of reinstatement in several regions including the left 
PC and ATL. Future research is still needed to better understand the role 
of the left PC in semantic processing and episodic reinstatement of se-
mantic information, as well as to investigate the replicability of these 
findings across different materials, such as visual items. 
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