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Structural dimensions of object pictures: Organization

and relation to object decision and naming

J. Frederico Marques and Ana Raposo

Faculty of Psychology and Center for Psychological Research,

University of Lisbon, Lisbon, Portugal

The present paper evaluated the nature of the organization of 22 structural
measures of object pictures from the Snodgrass and Vanderwart (1980) picture set
(Study 1), and their contribution to object decision and to object naming latencies
(Studies 2 and 3). Study 1 employed a principal components analysis and provided
evidence of four underlying components: ‘‘Object parts’’, ‘‘internal details’’, ‘‘object
contours’’, and ‘‘variability of the representation’’. Study 2 examined the contribu-
tion of these components to object decision and object naming and highlighted
variability of the representation and internal details as the most relevant indexes of
structural similarity. Study 3 investigated the interactions between these structural
components and lexical frequency. Main results showed an interaction effect
between variability of the representation and lexical frequency and other effects
associated to internal details. Implications for the concept of structural similarity
and for object recognition are discussed from a continuous and cascade processing
perspective.

Keywords: Object decision; Object naming; Object recognition; Structural

similarity; Structural variables.

Recognizing and naming objects are pervasive behaviours that are funda-

mental to human interaction and communication and that have been

extensively studied in controlled situations with different visual tasks. This
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paper concerns the relevant structural dimensions of object pictures that we

attend to in object decision and object naming.

Most current accounts suggest that naming a common object, or its

pictorial representation, involves at least three kinds of stored representa-

tions and processing stages (e.g., Glaser, 1992; Humphreys, Riddoch, &
Quinlan, 1988): A structural representation that specifies the visual shape of

the object and is associated with object recognition; a semantic representa-

tion that concerns categorical, functional, and associative information about

the object, linked to semantic memory; and finally a lexical form or

phonological representation that corresponds to the object’s name and is

associated with name retrieval (some authors*e.g., Levelt, Roelofs, &

Meyer, 1999*further distinguish other postsemantic representations that we

will not discuss here for the sake of clarity).
Importantly, since the work of Humphreys et al. (1988), it has been

considered that the processes involved at the different levels operate in a

cascade and continuous manner and thus the structural dimensions and

structural similarity between stimuli may influence processes subsequent to

accessing this first representation level. The general idea is that the structural

descriptions of all objects sharing a high proportion of common visual

features will initially be activated following the presentation of a given object

and this activation will be transmitted to the semantic and also the
phonological level, ultimately constraining name retrieval. Moreover, the

effects of variables on early and late stages of object recognition combine in

an interactive rather than additive manner, consistent with object processing

stages operating in a cascade and continuous manner rather than a serial

discrete manner (Humphreys & Forde, 2001; Humphreys, Price, & Riddoch,

1999; Humphreys et al., 1988).

This first presemantic or structural stage is considered to involve a

multiplicity of processes that also operate in an interactive manner to achieve
object recognition including: The analysis of simple lower level visual

elements; the grouping of these elements in simple shapes through different

processes (e.g., proximity, collinearity, closure); their binding into more

elaborate shape descriptions to whole objects or larger objects parts

(considering the spatial relationships between shape elements); and the

matching of these configurations to the structural representations stored in

long-term memory (e.g., Behrmann & Kimchi, 2003; Gerlach, 2009;

Humphreys et al., 1999). In the case of object naming there is a need for
finer visual differentiation relative to recognition or categorization tasks

(Humphreys & Forde, 2001; Humphreys et al., 1999). More specifically,

there will be increased processing of visual information both involving

bottom-up activation of more detailed visual knowledge and also top-down

feedback in order to differentiate the activation generated by the target from

that of structurally similar objects. Structural similarity effects are thus
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transmitted through a series of processing stages, with additional forms of

information being recruited interactively to differentiate between competi-

tors depending on the specific task requirements (Humphreys & Forde,

2001).

In this context, a crucial discussion regards which structural dimensions

are relevant to the computation of structural similarity between objects and

at what processing level these dimensions intervene. In fact, although two

objects may be similar in various structural dimensions, it is possible that

only some of these dimensions are considered when we compute their

similarity. Moreover, it is possible that the relevant structural dimensions (or

the type of structural similarity considered) may vary as a function of the

task demands, such as object recognition or object naming. This is an

ongoing discussion for which no general agreement has been reached. This

stands in contrast with the contribution of lexical-semantic variables to

name retrieval where there is a general agreement that especially age of

acquisition (i.e., the age at which a given concept is learned) and name

agreement (i.e., the degree of consensus in the names of a given picture), and

secondarily the familiarity with the object (whether assessed by rating

familiarity or by name written or oral word frequency) and its name length

(number of syllables, phonemes, or letters) influence both naming latency

and accuracy, probably intervening at a late semantic or postsemantic

(lexical) stage (e.g., Almeida, Knobel, Finkbeiner, & Caramazza, 2007; Bates

et al., 2003; Johnson, 1992; Johnson & Clark, 1988; Johnston & Barry, 2006;

Juhasz, 2005; Snodgrass & Yuditsky, 1996).

In this debate the most widely used visual materials have been the

Snodgrass and Vanderwart (1980) picture set, a corpus of 260 black and

white line drawings, for which different lexical-semantic and structural

dimensions have been proposed and evaluated under different tasks and

experimental settings. At the structural level, these measures include ratings

regarding several structural aspects of the pictures (and also their correspond-

ing real world objects) and measures of the physical characteristics of the

pictures. In the first set,1 we can find visual complexity (Snodgrass &

Vanderwart, 1980), corresponding to the rating of how complex the picture

is in terms of its details or intricacy; decomposability (Lloyd-Jones &

Luckhurst, 2002), corresponding to the number of judged visual parts each

picture could be decomposed; visual ambiguity (Tranel, Logan, Frank, &

Damasio, 1997), the extent to which the object class is formed by entities that

are visually similar to the item but yet are distinct items; visual familiarity

(Laws & Neve, 1999), the extent to which the subject is familiar with the item

visual appearance; image agreement (Snodgrass & Vanderwart, 1980), the

1 References in this section refer to the study that first proposed the measure.
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extent to which the picture resembled the mental image of the item; picture�
name agreement (Snodgrass & Vanderwart, 1980), the extent to which the

picture was a good example of the items it was supposed to represent; and

within-item structural variability (Laws & Neve, 1999) or image variability

(Snodgrass & Vanderwart, 1980), the extent to which the items that have a

given name have similar structural representations.

In the second set, various physical measures have been calculated from

standardized images of the Snodgrass and Vanderwart (1980) corpus

including: Contour overlap (Humphreys et al., 1988), the percentage of

overlap of contour between a particular item and other members of its

Snodgrass and Vanderwart (1980) taxonomical category; proportion of

internal details (Kurbat, 1997), the proportion of internal pixels to the total

number of pixels in the picture; proportion of straight, concave, and convex

contours, number of concavities, and curvature variability (Kurbat, 1997),

calculated from the picture contour divided by a computerized method

related to creating smooth and accurate approximation of curves at coarse

and fine scales; proportion of black line (Laws & Gale, 2002), the proportion

of black pixels to the total number of pixels in the picture; Euclidean overlap

(Laws & Gale, 2002), a measure that considers pixel-to-pixel spatial

correspondence between each picture and all others from items of the

same taxonomical category or from items from the whole Snodgrass and

Vanderwart (1980) set; interpixel correlation (Laws & Gale, 2002), a measure

that considers for every pixel within each picture, the proportion of

immediate neighbour pixels with identical values; and complexity (Forsythe,

Mulhern, & Sawey, 2008), a measure automatically computed on the extent

to which a picture has edges (i.e., perimeter detection measure).

Prior studies have focused on the contribution of these structural

dimensions to name retrieval, considering different types of naming tasks:

Standard picture naming (in which pictures are presented until the

participant provides a name for the picture under no timing constraints;

e.g., Alario et al., 2004; Bates et al., 2003; Bonin, Chalard, Méot, & Fayol,

2002; Cuetos, Ellis, & Alvarez, 1999; Laws, Leeson, & Gale, 2002; Lloyd-

Jones & Nettlemill, 2007; Snodgrass & Yuditsky, 1996), picture naming

under speeded naming conditions (in which participants are asked to name

the picture within a very short deadline, intended to limit the name-retrieval

stage; e.g., Lloyd-Jones & Nettlemill, 2007; Vitkovitch, Humphreys, &

Lloyd-Jones, 1993), picture naming with degraded stimuli (where pictures

are presented for very short time and/or masked, in order to limit the

visual information available for the stimuli; e.g., Laws & Gale, 2002; Laws,

Leeson, & Gale, 2002; Laws & Neve, 1999), and picture naming conducted

with patients presenting different visual, semantic, and/or postsemantic

impairments (e.g., Humphreys et al., 1988; Turnbull & Laws, 2000).
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A smaller number of studies have used this set of pictures in object

decision tasks, in which participants are asked to decide if a given picture

depicts a real object or not (e.g., Barbarotto, Laiacona, Macchi, & Capitani,

2002; Humphreys et al., 1988; Lloyd-Jones & Humphreys, 1997a; Magnié,

Besson, Poncet, & Dolisi, 2003) and which is considered to access structural
knowledge and the object recognition stage. Finally, some studies have tried

to access the semantic knowledge stage using word�picture matching, where

participants are asked to decide if a given picture refers to the same object of

a previously presented name (e.g., Catling & Johnston, 2006; Humphreys

et al., 1988; Stadhagen-Gonzalez, Damian, Pérez, Bowers, & Marı́n, 2009),

and picture categorization, where participants have to decide if a given

picture belongs to a specific category such as living or nonliving things (e.g.,

Laws, Gale, & Leeson, 2003; Lloyd-Jones & Humphreys, 1997b). The
Snodgrass and Vanderwart picture set has also been used in several

languages, including English (Barry, Morrison, & Ellis, 1997), French

(Alario et al., 2004; Rossion & Pourtois, 2004), Spanish (Cuetos et al.,

1999), and Japanese (Nishimoto, Miyawaki, Ueda, Une, & Takahashi, 2005).

Thus, this databank is particularly well suited to investigate the nature of

structural dimensions, thought to be language independent, and how they

interact with higher order semantic and lexical variables, where linguistic

factors play an important role.
However, despite being vastly tested, the contribution of structural

variables to object recognition is still unclear, as the studies so far have

not carried out a full comparison between the different dimensions (see

Table 1) and have not evaluated the differential and integrated contribution

of these measures to the computation of structural similarity and to object

recognition and naming. First, no study has investigated how these

dimensions might be related or might contribute to the different processing

stages in a single experiment. Second, the discussion of structural dimen-
sions and structural similarity has mainly focused on the categorical

differences regarding these dimensions and their contribution to perfor-

mance differences in category-specific impairments (e.g., Gerlach, 2009;

Humphreys & Forde, 2001; Humphreys et al., 1988; Kurbat, 1997; Laws &

Gale, 2002; Laws, Gale, Frank, & Davey, 2002; Laws & Hunter, 2006;

Laws & Neve, 1999; Lloyd-Jones & Nettlemill, 2007; Tranel et al., 1997;

Turnbull & Laws, 2000). The relationship between structural dimensions and

category-specific differences in final object naming is of course important, as
name retrieval at postsemantic level will ultimately be constrained by the

amount of visual and semantic features that the target shares with similar

items within a category. However, by restricting the debate to category-

specific differences, we argue that a more general framework of the

contribution of the different structural dimensions to object recognition

has been lost. In particular, this approach leaves out an evaluation of the
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differential contribution of the diverse structural dimensions to the

computation of structural similarity and to the various processing stages.

In the present study we wish to contribute to this evaluation from a

general perspective of cascade and continuous processes in object recogni-

tion and naming (e.g., Humphreys et al., 1988) and from a perspective of a

presemantic structural stage involving a multiplicity of interactive processes

and different structural dimensions that may influence object recognition

and name retrieval (e.g., Behrmann & Kimchi, 2003; Gerlach, 2009;

Humphreys et al., 1999).

Within this framework our first goal is to evaluate how the different

structural variables proposed for pictures may be related and organized in

terms of larger underlying structural dimensions. A second goal is to

investigate the contribution of these underlying structural dimensions to the

computation of structural similarity in the context of different stages of

object processing.

TABLE 1
Variables (abbreviations), reference articles, and number of items

Variables Reference

Number of

items

Complexity (COMP) Forsythe et al. (2008) 260

Proportion of concave contour coarse

(CONC_C)

Kurbat (1997) 251

Proportion of concave contour fine (CONC_F) Kurbat (1997) 251

Contour overlap (CONT_O) Humphreys et al. (1988) 226

Proportion of convex contour coarse (CONV_C) Kurbat (1997) 251

Proportion of convex contour fine (CONV_F) Kurbat (1997) 251

Curvature variability coarse (CURV_C) Kurbat (1997) 251

Curvature variability fine (CURV_F) Kurbat (1997) 251

Decomposability (DECOMP) Lloyd-Jones and Nettlemill

(2007)

204

Euclidean overlap category (EO_CAT) Laws and Gale (2002) 145

Euclidean overlap general (EO_GEN) Laws and Gale (2002) 254

Image agreement (IMAG) Snodgrass and Vanderwart

(1980)

260

Proportion of internal details (INT_DET) Kurbat (1997) 251

Interpixel correlation (IPIXCOR) Laws and Gale (2002) 254

Number of concavities coarse (NCONC) Kurbat (1997) 251

Number of concavities fine (NCONF) Kurbat (1997) 251

Proportion of black line (PBLACK) Laws and Gale (2002) 254

Proportion of straight contour coarse (STR_C) Kurbat (1997) 251

Proportion of straight contour fine (STR_F) Kurbat (1997) 251

Visual complexity (VCOM) Snodgrass and Vanderwart

(1980)

260

Visual Familiarity (VFAM) Laws and Neve (1999) 251

Within-item structural variability (WSTVAR) Turnbull and Laws (2000) 260
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To address these issues, we present three studies considering the

Snodgrass and Vanderwart (1980) picture set, previously published norms

of the structural measures described and previously published data from

object decision and standard picture naming (i.e., under no deadline

conditions). In the first study we analysed the empirical interrelationships
between the different structural measures and addressed their implications to

the understanding of presemantic processing dimensions and structural

similarity. The second study examined the contribution of the four under-

lying structural dimensions identified in Study 1 to structural similarity in

the context of object decision and naming. Finally, the third study

investigated the contribution of the four underlying structural dimensions

in the context of their interaction with postsemantic variables (i.e., lexical

frequency) as predicted from a perspective of cascade and continuous
processing in object recognition.

STUDY 1

In the first study we evaluated how structural dimensions of line drawings

may be organized, considering that such organization may reflect different

levels of processing at the presemantic structural stage of object recognition.

As was mentioned before, it has been proposed that this early stage involves

a multiplicity of processes that operate in an interactive manner (e.g.,

Behrmann & Kimchi, 2003; Gerlach, 2009; Humphreys et al., 1999). Thus,
different structural dimensions may tap into different processes from

bottom-up activation to top-down modulation, from more local to more

global visual analysis and/or from lower level to higher level visual

processing.

For this purpose we conducted a principal components analysis to assess

the intercorrelation among the different structural variables and to

determine if the pattern of correlations could be explained by a more

parsimonious set of latent dimensions associated to structural characteristics
and/or processes.

Method

Variables. The study included all the structural variables previously

described for which there were available norms (n�22). The variables, the

studies where they were taken from and the number of Snodgrass and

Vanderwart (1980) items included in such studies are presented in Table 1.

Statistical analyses. We used the Statistica 7 statistical package to

perform all correlational and principal component analyses. As can be
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seen in Table 1, there are differences in the number of items for the different

variables. In some instances, the variables cannot be computed for some

items (e.g., Kurbat, 1997) and in many other instances the fact that living/

nonliving differences were the focus of the study led the authors to select a

smaller set of items (e.g., Laws & Gale, 2002; Lloyd-Jones & Nettlemill,
2007). Particularly, Euclidean Overlap by category includes a much smaller

number of items because not all of the Snodgrass and Vanderwart (1980)

items were judged to belong to a coherent category (Laws & Gale, 2002). In

order to maximize the number of items and, considering that the observed

results were similar with or without Euclidean Overlap by category (in fact

this variable is strongly correlated with Euclidean overlap general, r�.91,

n�136) we only report and discuss results for this later case (21 variables

and n�213).
A principal components analysis (PCA) was performed to extract the

components or dimensions underlying the correlations between variables. To

determine how many components should be retained we used a parallel

analysis (Horn, 1965) and the SPSS statistical package (using the parallel

analysis scripts developed for SPSS by O’Connor, 2000). Interpretation and

labelling of each component was based on component loadings of .30 or

higher, as recommended by different authors for choosing salient factor

loadings (Child, 2006) and considering the components where each variable
had the highest salient loadings. In order to achieve simple structure and

make the pattern of loadings easy to interpret we used a standard varimax

rotation.

Results and discussion

Correlations between all variables are presented in Table 2.

The four-component solution yielded by the PCA accounted for 76% of the
variance and is represented in Table 3. Table 4 complements this table,

illustrating the 10 items with the highest and lowest factor scores for each

component (see Study 2 for details on the computation of factor scores). The

first component, accounting for 29% of the variance, obtained the highest

loadings from number of concavities, proportion of concave contours,

curvature variability, proportion of straight contours, decomposability, and

visual complexity. This component thus appears to reflect the complexity of

the pictures as related to object parts, as concavities are part boundaries
(Hoffman & Richards, 1984) and decomposability also reflects part

information (Lloyd-Jones & Nettlemill, 2007). The second component (22%

of the variance explained) obtained the highest loadings from Euclidean

Overlap at general level, proportion of black pixel, interpixel correlation,

proportion of internal details, complexity, and visual complexity. This second

component appears to reflect the complexity of the pictures as related to its
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TABLE 2
Correlation matrix between all variables

COMP CONC_C CONC_F CONT_O CONV_C CONV_F CURV_C CURV_F DECOMP EO_GEN IMAG INT_DET IPIXCOR NCONC NCONF PBLACK PNAM STR_C STR_F VCOM VFAM

CONC_C .28*

CONC_F .27* .94*

CONT_O �.26* .10 .02

CONV_C �.11 .20* .19* .21*

CONV_F �.13 �.09 �.11 .17 .84*

CURV_C .23* .62* .51* .19* .38* .34*

CURV_F .28* .66* .59* �.04* �.01 �.19* .51*

DECOMP .58* .56* .55* �.09 �.06 �.21* .35* .43*

EO_GEN .64* .11 .10 �.08 .17 .22* .24* .08 .24*

IMAG �.18* �.06 �.08 �.03 .09 .02 �.11 �.15 �.23* �.10

INT_DET .64* �.19* �.21* �.21* .02 .14 .07 .03 .24* .63* �.18*

IPIXCOR �.89* �.20* �.19* .21* �.05 �.06 �.26* �.23* �.42* �.86* .15 �.71*

NCONC .37* .89* .84* .09 .10 �.14 .63* .62* .55* .19* �.09 �.16 �.27*

NCONF .32* .85* .83* .07 .10 �.13 .53* .67* .51* .15 �.11 �.16 �.24* .93*

PBLACK .64* .11 .09 �.08 .16 .20* .24* .10 .23* .98* �.11 .62* �.88* .19* .15

STR_C �.10 �.76* �.72* �.20* �.78* �.50* �.65* �.41* �.31* �.18* �.02 .11 .16 �.63* �.60 �.18* .03

STR_F �.08 �.59* �.61* �.15 �.80 �.72* �.63* �.25* �.22* �.24* .03 .04 .18* �.48* �.47* �.23* .05 .90*

VCOM .67* .54* .52* �.01 .05 �.12 .40* .35* .64* .48* �.23* .43* �.62* .54* .47* .49* �.16 �.38* �.26*

VFAM �.21* �.28* �.27* �.07 .02 .11 �.22* �.20* �.20* �.18* .09 �.07 .21* �.28* �.24* �.22* .35* .17 .10 �.45*

WSTVAR �.01 .22* .17 .28* .09 0 .16 .01 �.05 .01 .42* �.18* .01 .21* .17 .03 �.04 �.20* �.12 .19* �.39*

N�213. *p B.01.
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internal details with which these variables seem to be associated (with the

exception of decomposability but which has the lowest salient loading in this

component). The third component explained 16% of the variance and

obtained the highest loadings from proportion of convex contours and

proportion of straight contours, possibly reflecting object contours that are

not associated to object parts (with the exception of curvature variability but

which has a low salient loading in this component). Finally, the fourth

component (8% of the variance explained) obtained the highest loadings from

within-item structural variability, image agreement, visual familiarity and

contour overlap. This component appears to be related to a more top-down

dimension associated with various aspects of the variability of the representa-

tion of a particular picture, their exemplars, or the category they belong.
Overall, this analysis reveals a major weight of more bottom-up variables

(largely corresponding to the first three components and explaining 68% of

TABLE 3
Component loadings of the structural variables after varimax rotation (n�213)

Component 1

Object parts

Component 2

Internal details

Component 3 Object

contours

Component 4

Variability of the

representation

COMP .30 .84 �.17 �.08

CONC_C .95 .03 .15 .10

CONC_F .92 .02 .13 .05

CONT_O .06 �.21 .27 .37

CONV_C .07 .02 .94 .05

CONV_F �.21 .08 .94 �.04

CURV_C .62 .17 .45 .04

CURV_F .75 .09 �.06 �.14

DECOMP .64 .38 �.16 �.18

EO_GEN .02 .90 .20 .06

IMAG �.17 �.17 .06 .57

INT_DET �.21 .83 .01 �.19

IPIXCOR �.16 �.95 �.03 .03

NCONC .93 .11 .05 .11

NCONF .91 .07 .05 .05

PBLACK .03 .90 .19 .08

STR_C �.65 �.04 �.71 �.10

STR_F �.48 �.08 �.84 �.01

VCOM .55 .63 �.06 .14

VFAM �.30 �.26 .12 �.51

WSTVAR .14 �.02 .04 .90

Eigenvalue 6.08 4.66 3.45 1.71

Variance

explained

29% 22% 16% 8%

Numbers in bold indicate loadings at or above .30.
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the observed variance) that reflect local or global aspects of the stimulus

complexity and of its evaluation (i.e., object parts and internal details vs.

object contours). In addition, the results also demonstrate a smaller

influence of more global top-down modulation associated to the cognitive

processing of the pictures and to the variability of the representations. This

top-down modulation aggregates a smaller number of variables and

corresponds to the fourth component identified in the PCA (explaining

8% of the observed variance).

These results show that many authors have emphasized the role of more

local and bottom-up variables in object recognition and support an

TABLE 4
The 15 top highest and lowest items for each component (in terms of factor scores)

Component 1

Object parts

Component 2 Internal

details

Component 3

Object

contours

Component 4

Variability of the

representation

Top highest items Comb

Eye

Fence

Spider

Caterpillar

Ant

Skunk

Grasshopper

Deer

Rooster

Beetle

Cow

Goat

Bee

Horse

Basket

Spool of thread

Accordion

Window

Stove

Peacock

Windmill

French horn

Thimble

Skunk

Strawberry

Piano

Harp

Celery

Bus

Button

Peach

Orange

Ring

Ball

Strawberry

Tomato

Nut

Doorknob

Peanut

Potato

Apple

Pear

Thimble

Football

French horn

Spool of thread

Artichoke

Axe

Giraffe

Cigarette

Thimble

Strawberry

Harp

Wrench

Pliers

Ostrich

Pineapple

Elephant

Skunk

Top lowest items Refrigerator

Bowl

Window

Book

Door

Potato

Ball

Peach

Light switch

Glass

Football

Nut

Orange

Thimble

Button

Paintbrush

Banana

Apple

Axe

Nail

Arm

Rolling pin

Bottle

Knife

Baseball bat

Heart

Pear

Cherry

Hanger

Balloon

House

Knife

Cigarette

Cigar

Church

Refrigerator

Ruler

Pen

Light switch

Paintbrush

Door

Swing

Baseball bat

Flute

Window

Church

Sweater

Vase

Hair

Bottle

Boot

Chair

Jacket

Clock

Shoe

Coat

Car

Doll

Dress

House
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organization of the different structural variables proposed in the literature

along two major processing dimensions*local versus global and bottom-up

versus top-down. Although these results provide important information

regarding the underlying nature of the organization of structural variables,

they do not specify the role that these dimensions play in terms of structural

similarity. We addressed this issue in Study 2.

STUDY 2

In the second study we examined the direct contribution of the four

structural dimensions identified in Study 1 to structural similarity in the

context of object decision and object naming. Considering the general

perspective of cascade and continuous processing in object recognition

(Humphreys & Forde, 2001; Humphreys et al., 1988, 1999), it is expected

that structural similarity determines the time required to differentiate a

target from competitors. Therefore, it should impact performance on both

object decision and object naming tasks. We evaluated the contribution of

the four structural dimensions to structural similarity by analysing the

influence of these dimensions on object decision and naming latencies of

previously published studies. Importantly, we included studies carried out in

different languages as the contribution of structural dimensions should be

largely language independent. However, this may not be the case for the

measures that involve the subjects’ judgements, with several studies showing

an effect of stimulus familiarity upon visual complexity judgements (e.g.,

Forsythe et al., 2008) and hence the possibility of cultural differences. In

contrast, other studies have shown that even when the rated structural

variables correspond to a different language or a different population from

the one where naming latencies are collected, the former variables still

contribute to naming performance (e.g., Bates et al., 2003).

Method

Variables. The study included the four structural dimensions identified

in Study 1 that were considered as possible predictors of naming

performance (n�213). Performance in terms of latency was analysed for

one study of object decision and five studies of object naming (i.e., standard

picture naming). Study selection was first made considering the availability

of published articles that included a large part (or all) of the Snodgrass and

Vanderwart (1980) corpus and that provided latency results by item. In

addition, the final number of items, discarding items for which we did not

have structural information or response time (RT) data (items for which

there is low naming performance are usually discarded from latency analyses
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in object naming) should include more than half of the items from the

original corpus. Studies’ characteristics are described in Table 5, including

the number of items with RT data and number of participants. In the case of

the object decision study (Magnié et al., 2003), participants were additionally

presented with an equal number of meaningless pictures (n�240), half

corresponding to chimeric objects (i.e., made up of two halves of real objects

with the constraint that the global shape was unbroken) and half to

nonobjects (i.e., made up by mixing up the line drawing of a real object, with

the constraints that the outcome was not reminiscent of any real object and

that the global shape was unbroken).

Data analysis. The values of each item on the four structural dimensions

were calculated through factor scores, as given by the Statistica 7 statistical

package. Considering the factor scores and latency data we computed a

stepwise multiple regression for each study using the four components as the

independent variables and latency as the dependent variable.

Results and discussion

The results of the multiple regressions using latencies as dependent variables

and the four structural dimensions as independent variables are presented in

Table 6.

As it is clear from Table 6, Component 4, the variability of the

representation, and Component 2, internal details, are the main predictors

of latencies across studies (although internal details is not significant in all

studies). Although the variance explained by these components is modest,

they stand out as consistent predictors of processing latencies, in contrast to

the other two bottom-up components.

TABLE 5
Naming latency studies considered

Study Language (country) Number of items Participants

Alario et al. (2004) French (France) 233 46

Barry et al. (1997) English (UK) 260 26

Bonin et al. (2002) French (France) 207 72

Magnié et al. (2003)* French (France) 240 28

Nishimoto et al. (2005) Japanese (Japan) 260 120

Snodgrass and

Yuditisky (1996)

(Exp. 1)

English (USA) 250 84

*Object decision task. All other studies correspond to the object naming task, in which only

objects from the Snodgrass and Vanderwart set were presented.
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These results highlight internal details and variability of the representa-

tion as possible contributors to structural similarity. The relationship

between level of internal details and structural similarity is straightforward,

as the more internal details an object has, the higher the probability that it

will be structurally similar to other objects (Laws & Gale, 2002). This is

clearly illustrated by the items presented in Table 4 of Study 1. As for

variability of the representation, its contribution to structural similarity is

not so obvious. To better understand this relationship, it is important to

consider the different variables that contribute to variability of the

representation separately (see Table 3). For contour overlap, the higher

the contour overlap between a target and other objects of the same category,

the more structurally similar the items will be. However, this is not the case

for within-structural variability and image agreement (which have the highest

loadings on this component). If the exemplars of a given concept have

similar structural representations (i.e., low within-structural variability) and

if the particular picture that depicts it provides a good match to our mental

image of the concept (i.e., high image agreement), it will be easier to assess

its structural similarity to other objects, although it may not always be the

case that a particular object is more similar to others. A complementary

multiple regression analysis of the object decision accuracy data (also from

Magnié et al., 2003) showed internal details as the only significant predictor,

beta�.17, p B.01; multiple R2�.05. As such, it seems that this variable is

TABLE 6
Multiple regression analysis with latencies as dependent variables and the four
components as independent variables; values of Rs and beta coefficients for the

independent variables in each study

Alario

et al.

(2004)

(n �190)

Barry

et al.

(1997)

(n �213)

Bonin

et al.

(2002)

(n �170)

Magnié

et al.

(2003)

(n �197)

Nishimoto

et al.

(2005)

(n �213)

Snodgrass

and

Yuditisky

(1996)

(n �211)

Component 1 (object

parts)

�.02 �.05 �.03 .01 �.06 .05

Component 2 (internal

details)

.18* .18* .12 .22** .15* .12

Component 3 (object

contours)

.01 �.01 �.01 �.01 �.04 .01

Component 4 (variability

of the representation)

.23** .30** .22** .16** .19** .34**

Multiple R2 .08 .12 .06 .07 .06 .13

F-value 4.07** 7.36** 2.43* 3.82** 3.42** 7.71**

*pB.05, **pB.01.
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critical in a task that is more related to access to structural representations.

In contrast, variability of the representation was more important than

internal details in the object naming studies. The differential impact of the

variability of the representation on performance is consistent with the idea

that naming, in comparison with object decision, requires finer visual

differentiation and increased processing of visual information in terms of

top-down feedback in order to differentiate the activation generated by the

target from that of similar structural objects (Humphreys & Forde, 2001;

Humphreys et al., 1999).

The results might show that structural dimensions directly influence

object decision and naming, but the contribution of lexical-semantic

variables should also be taken into account, since structural components

explain only part of the variance observed in naming latencies (Table 6).

Object decision studies with dementia patients suggest that this task involves

not only access to structural components but also partial access to semantic

representations (Chertkow, Bub, & Caplan, 1992; Hovius, Kellenbach,

Graham, Hodges, & Patterson, 2003). Regarding object naming, previous

standard picture naming studies have pointed to the significant role of

lexical-semantic variables to naming latency (e.g., Alario et al., 2004; Barry

et al., 1997; Cuetos et al., 1999; Nishimoto et al., 2005). This is consistent

with the perspective of cascade and continuous processes in object

recognition, which emphasizes the interactions between the different levels

of processing. The potential interactions between the four structural

dimensions and lexical-semantic variables are investigated in Study 3.

STUDY 3

In Study 3 we tested the potential interaction between structural and lexical-

semantic dimensions. The cascade perspective considers that after the initial

activation of structural descriptions, activation is transmitted continuously

to subsequent semantic and lexical stages (Humphreys & Forde, 2001;

Humphreys et al., 1988). As such, multiple lexical representations may be

activated before the completion of the structural analysis of the stimuli and

consequently structural similarity effects may interact with those of semantic

and lexical variables. More specifically, the cascade model predicts that

frequency effects on naming latencies are larger for pictures of structurally

distinct objects than for pictures of structurally similar objects (Humphreys

et al., 1988, 1999; Vitkovich et al., 1993). Moreover, as structurally distinct

objects have fewer perceptual neighbours and enjoy more efficient access to

stored structural descriptions, their naming times should not only be faster

but should also not correlate with a measure of structure overlap. The

opposite should occur for structurally similar objects (Vitkovich et al., 1993).
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These hypotheses have been supported by studies in which the contour

overlap measure (see Table 1) was considered as a single index of structure

similarity (Humphreys et al., 1988; Humphreys et al., 1999; Vitkovich et al.,

1993). However, Study 2 has identified other structural components that may

more adequately represent structural similarity. Moreover, the fact that some

components seem to have no direct influence on object decision or object

naming latencies does not exclude the possibility that they may contribute to

structural similarity by constraining the effects of subsequent semantic-

lexical variables.

In the present study we evaluated the potential interaction between each

of the four structural components and a measure of lexical frequency on

naming latencies. For this purpose, we simulate a replication of Humphreys

et al. (1998). In this study, the authors orthogonally manipulated structural

similarity based on the contour overlap measure and written word frequency,

and tested the effects of both variables on naming latencies. Image agreement

and visual complexity were controlled for, but not the contribution of other

variables or structural components, such as the ones identified in Study 1.

We thus replicate the study, separately considering the potential interaction

of each of the four components with lexical frequency, while controlling for

the influence of the remaining three components. Analyses were carried out

on the naming data from Snodgrass and Yuditsky (1996) and from Alario

et al. (2004) in order to include studies in more than one language.

Method

Variables and materials. From the object naming studies analysed in

Study 2 we selected those of Snodgrass and Yuditsky (1996) and Alario et al.

(2004), for which we were also able to collect the written word frequency for

the majority of picture names (the Kucera-Francis frequency counts for

English included in the norms of Snodgrass & Vanderwart, 1980, in the first

case; and the frequency counts from the French database Lexique from New,

Pallier, Ferrand, & Matos, 2001, in the second case). This allowed an

orthogonal manipulation of structural components and lexical frequency

(which was also the measure taken by Humphreys et al., 1988). Considering

these two orthogonal measures (i.e., factor scores of each structural

component and written word frequency), we selected a total of 40 items

for each component, half with high structural overlap and half with low

structural overlap on that component. In addition, for each set, half of the

items had high written name frequency and the other half had low written

name frequency. There were no component differences between the high and

low written name frequency items (and vice versa) and no frequency by

component interactions. However, since in all four simulations there were
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significant differences in other components and in the number of letters

between high and low written name frequency items, all subsequent analyses

were performed using these dimensions as covariates.

Data analysis. To explore the hypotheses stemming from a cascade

perspective, for each combination of structural component by word

frequency, we analysed the effects of both variables in a 2�2 ANOVA. As

such, for each study (Alario et al., 2004; Snodgrass & Yuditsky, 1996) we

performed four main 2�2 ANOVAs, one for each component.

More specifically, we examined whether there was a main effect of

structural similarity (i.e., faster naming times for structurally dissimilar

items) and a specific interaction predicted from a cascade perspective, that is,

larger frequency effects on naming latencies for structurally distinct objects

than for structurally similar objects. Finally, also from a cascade perspective,

we tested the predicted correlations between naming times and each

structural component, which should only be significant for structurally

similar items.

Results and discussion

In both studies datasets, main effects of lexical frequency were observed in a

majority of manipulations but no longer remained significant when all other

variables were included as covariates. Regarding the four structural

components, there was only a significant effect of internal details for the

Alario et al. (2004) study, F(1, 76) �4.85, MSE�71162, p B.05, and this

remained significant when all other variables were entered as covariates,

F(1, 72) �5.35, MSE�80915, p B.05.

Most importantly, the predicted interaction between lexical frequency and

structural components was significant in both studies. Specifically, there was

a significant interaction between lexical frequency and variability of the

representation, F(1, 76) �4.57, MSE�91260, p B.05 for Snodgrass and

Yuditsky (1996), and F(1, 76) �4.85, MSE�80963, p B.05 for Alario et al.

(2004). As illustrated in Figure 1, and confirmed by planned comparisons,

this interaction corresponded to the fact that the lexical frequency effect on

naming latencies was significant for structurally distinct objects,

F(1, 76) �14.28, MSE�284934, p B.01 for Snodgrass and Yuditsky, and

F(1, 76) �7.11, MSE�106368, p B.01 for Alario et al., but not for

structurally similar objects, F(1, 76) �0.57, MSE�11357, ns, for Snodgrass

and Yuditsky, and F(1, 76) �0.30, MSE�45488, ns, for Alario et al. This

result remained significant when other variables were entered as covariates,

F(1, 72) �4.93, MSE�96532, p B.05, for Snodgrass and Yuditsky and

F(1, 72) �5.07, MSE�76969, p B.05, for Alario et al.
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Figure 1. Picture naming latencies as a function of lexical frequency (high, low) and Component 4, variability of the representation (high, low) for the Alario

et al. (2004) and for Snodgrass and Yuditsky (1996) data sets.
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Regarding the hypothesized pattern of correlations, we observed a

significant correlation between naming times and Component 2, internal

details for the Snodgrass and Yuditsky (1996) data set. In this particular

case, the correlation between structural similarity and naming latencies was

significant for similar items, r �.34, n�40, p B.05, but not for distinct

items, r�.18, n�40, ns. All other correlations were not significant.
The cascade model predicts simultaneously a main effect of structural

similarity, an interaction effect of lexical frequency and structural similarity,

and a correlation between the later and naming latencies. Since previous

studies have used a single index of structural similarity (Humphreys et al.,

1988, 1999; Vitkovich et al., 1993), it is not clear whether the different effects

are driven by the same structural components. Our study points to the idea

that two structural dimensions differentially modulate these effects. Varia-

bility of the representation interacted with lexical frequency, while the level

of internal details showed a main effect and a correlation with naming

latencies. Our results suggest a composite nature of structural similarity that

may include a more bottom-up aspect, related to internal details, and a more

top-down aspect related to variability of the representation. As previous

studies only used a single index of structural similarity, it is possible that

these two aspects were in fact conflated in their data. Further implications

are considered in the General Discussion.

GENERAL DISCUSSION

In the present study we explored the nature of the organization of the

different structural variables that have been proposed to characterize the

presemantic processing stage of object recognition and naming. In this

context, we set out to answer a set of related questions for which no

satisfactory reply had yet been given in the literature. First and foremost

what is the nature of the relationship between the many structural variables

proposed? Also, can these variables be integrated in a more parsimonious set

of underlying dimensions? Second, how do the different structural dimen-

sions proposed impact the computation of structural similarity between

objects and at what processing level do these dimensions intervene? Finally,

how should the contribution of structural similarity to object recognition

and naming may be accounted for under a cascade processing perspective?

To answer the first question we analysed the intercorrelation of 22

structural variables proposed by different authors for the Snodgrass and

Vanderwart (1980) picture set (see Table 1) and conducted a PCA analysis to

determine if the pattern of correlations could be explained by a more

parsimonious set of latent dimensions. Results showed that some pairs of

variables were highly interdependent in this picture set and/or measure
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essentially the same underlying components. More importantly, PCA

analysis showed that the variables are organized in four components, three

of them reflecting more bottom-up dimensions of the stimuli and

one component reflecting more top-down and global processes. The first

three components explain a larger part of the variance observed (68.1%) and
seem to reflect the complexity of the picture as related to object parts,

internal details, and object contours not associated with parts. The other

component seems to tap into the variability of the representation in relation

to the particular picture, and in relation to its taxonomical counterparts and

exemplars.

This systematization is important to uncover the nature of the structural

dimensions in object recognition and to provide a framework to interpret

and evaluate both past and future research. We do not expect this framework
to reflect all of the relevant dimensions and processes that occur at the

presemantic stage of object recognition. One should bear in mind that this

was an empirical analysis that was run on the available structural factors for

a given picture set. As such, other variables may be proposed for the same

picture set and other variables will have to be considered for real objects

(e.g., texture, colour, three-dimensional properties, etc.). Also, the relation of

these variables and/or the weight of components may change in a different

picture set. For example, Laws and Gale (2002) have noted that in the
standard Snodgrass and Vanderwart (1980) corpus most pictures have a

predominance of white space and hence the main source of variance between

pictures may be black line information. Rossion and Pourtois (2004) have

used this same set and added grey-level texture and surface details and also

colour. In the first case, as it is clear from their materials, texture adds more

internal details to the picture, which will probably have an impact on

structural similarity, as revealed by the present study. In the second case,

both Rossion and Pourtois and Price and Humphreys (1989) found that
colour information has a larger impact in naming objects that are

structurally similar, and it will be interesting to evaluate how this relates

to the different components identified in the present study.

Nevertheless, the results from Study 1 suggest an interesting organization

of relevant underlying structural dimensions of object recognition:

A tripartite set of more bottom-up stimulus characteristics*parts, internal

details, and contours*of which the first two seem more local and the third

one more global, and one more global and top-down dimension associated
to the variability of stimulus in relation to their representation. This seems to

be a good starting point to assess the value of these dimensions for other sets

of visual stimuli and tasks, and to propose and evaluate other structural

dimensions that have not yet been considered.

Regarding the second question, the importance of the different structural

dimensions to structural similarity, we found a contribution of internal
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details and variability of the representation to naming latencies in both

object decision and naming tasks. This was a small but robust and systematic

effect that was found across six different studies involving different tasks,

different participants, and different languages. In the case of internal details

there seems to be a straightforward relation to structural similarity (i.e., the
more proportion of internal details the more probable to be structurally

similar to other objects) that seems relatively more important in object

decision than in object naming. As for the variability of the representation,

its relationship to structural similarity is more complex and seems more

relevant in object naming than in object decision.

The contribution of these dimensions to structural similarity should also

be assessed using more direct measures of perceived similarity, namely by

collecting similarity ratings, as in Humphreys, Lamote, and Lloyd-Jones
(1995). This will allow a more direct link between the two structural

components (internal details and variability of the representation) and

structural similarity to be established, independently of the particular set of

stimuli used.

The importance of variability of the representation appears in contrast

with the lesser importance that is given in the object recognition literature to

top-down and global modulation as assessed by the results from Study 1.

Moreover, the fact that this dimension seems to include different aspects of
the variability of the representation, some of which may not be directly

related to structural similarity, asks for future research on top-down and

global structural variables.

The importance of this top-down dimension was also highlighted by the

results of Study 3 that revealed a combined effect of lexical frequency and

variability of the representation to naming latencies, whereas the manipula-

tion of other structural dimensions failed to show this combined effect. This

result is somehow contradictory from a cascade perspective. Considering the
idea that earlier structural processing remains unfinished before being

cascaded down for latter processing, it could be expected that the

interactions with lexical frequency would include the bottom-up compo-

nents. Moreover, one could even argue that the interaction observed between

our top-down component and lexical frequency could simply correspond to

some recurrent processing between the two levels. In addition, in the

previous study by Humphreys et al. (1988), the interaction of lexical

frequency was obtained with a variable (contour overlap) that also loads
in this top-down component, which leads us to question some of the

empirical support for a cascade and continuous processing in object

recognition and naming (Humphreys & Forde, 2001; Humphreys et al.,

1988, 1999). Nevertheless, results from Study 3 also showed that interactions

of semantic and lexical variables with structural components also include

bottom-up variables. First, in the case of internal details the predicted
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pattern of correlations of structural similarity to naming latencies was

observed in Study 3 (although only for one of the data sets). Second, as it

was mention before, the variability of the representation entertains a

complex relation to structural similarity and includes different aspects that

need further inquiry. In any case, the present results suggest that these

interaction patterns are more complex and differentiated than what was

previously considered (Humphreys et al., 1988, 1999). Moreover, the fact

that the predicted main effect and pattern of correlations were obtained for a

different structural component, i.e., internal details, suggests that previous

studies of structural similarity may have conflated different aspects of a

multidimensional concept.

We also assessed how structural components affect accuracy in an object

decision task, and found an effect of internal details. It would be interesting

to further explore this effect by testing the influence of the four structural

components on subjects’ accuracy in situations where viewing conditions are

not optimal, such as naming under speeded conditions (e.g., Lloyd-Jones &

Nettlemill, 2007; Vitkovitch et al., 1993) or object recognition and naming

with degraded stimuli (e.g., Laws & Gale, 2002; Laws, Leeson, et al., 2002;

Laws & Neve, 1999), which may differentially enhance the importance of

structural processing and structural dimensions.

This may also be the case for tasks used in Study 2 applied to patients

presenting different visual, semantic, and/or postsemantic impairments (e.g.,

Humphreys et al., 1988; Turnbull & Laws, 2000). In this situation, the

dimensions identified here may be readily applicable given that the

Snodgrass and Vanderwart (1980) picture set is so widely used for evaluating

various neurological and developmental disabilities, of which performance

on picture-naming tasks are sensitive indicators (Johnson, Paivio, & Clark,

1996).

For all these cases the present results provide a framework to investigate

the contribution of structural dimensions to performance, both in terms of

response latency, correct responding, and types of errors observed. This

evaluation will allow a more complete test of the theoretical and practical

relevance of this framework and of structural dimensions and structural

similarity in general for object recognition and naming.
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