
Contents lists available at ScienceDirect

Brain and Cognition

journal homepage: www.elsevier.com/locate/b&c

The neural bases of price estimation: Effects of size and precision of the
estimate

Ana Raposo⁎, Sofia Frade, Mara Alves, J. Frederico Marques
Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013 Lisboa, Portugal

A R T I C L E I N F O

Keywords:
Price estimation
Numerical processing
Size effect
Precision effect
Prefrontal cortex
Intraparietal sulcus

A B S T R A C T

People are often confronted with the need of estimating the market price of goods. An important question is how
people estimate prices, given the variability of products and prices available. Using event-related fMRI, we
investigated how numerical processing modulates the neural bases of retail price estimation by focusing on two
numerical dimensions: the size and precision of the estimates. Participants were presented with several product
labels and made market price estimates for those products. Measures of product buying frequency and market
price variability were also collected. The estimation of higher prices required longer response times, was as-
sociated with greater variation in responses across participants, and correlated with increasing medial and
lateral prefrontal cortex (PFC) activity. Moreover, price estimates followed Weber’s law, a hallmark feature of
numerical processing. Increasing accuracy in price estimation, indexed by decreasing Weber fraction, engaged
the intraparietal sulcus (IPS), a critical region in numerical processing. Our findings provide evidence for dis-
tinguishable neural mechanisms associated with the size and the precision of price estimates.

1. Introduction

We regularly need to estimate prices, whether to decide if a product
has a fair value, to plan a budget or to make a bid. An intriguing
question is how people estimate the market price of a good, given the
variability of products and prices available. A buyer’s judgment of an
item’s price is an important determinant of whether or not to purchase
(Thomas & Morwitz, 2009). Hence, unravelling the neurocognitive
underpinnings of our intuition for prices may advance knowledge on
price cognition and its implications to everyday purchasing decisions.

Behavioural research has shown that given a product name, people
can quickly provide a market price in a familiar currency. As proposed
by Dehaene and Marques in their studies of price estimation, people’s
judgment of the market value of goods depends, at least in part, on
numerical processing, i.e., our mental representation of magnitudes
(Dehaene & Marques, 2002; Marques & Dehaene, 2004). Indeed, prices
are a good example of a numerical property of products. Like other
numerosities, prices are subject to two critical effects: the distance ef-
fect, i.e., the comparison between two prices is slower and more error
prone when the prices are closer than further apart; and the size effect,
i.e., comparison difficulty increases with increasing price (Cao, Li,
Zhang, Wang, & Li, 2012; Dehaene & Marques, 2002; Moyer &
Landauer, 1967). These effects reveal that the representation of

quantities is approximate, rather than exact, and that larger quantities
are increasingly less discriminable.

Previous studies have shown that price knowledge obeys Weber’s
law. The law states that the ability to psychologically discriminate
numerical values depends on the ratio between the values being com-
pared, rather than their absolute difference (e.g., adding 5 grams to
100 grams or adding 10 grams to 200 grams has the same perceived
increase on weight, as the ratio is the same in both cases). Weber’s law
adequately predicts performance on numerical tasks (see Cantlon, Platt,
& Brannon, 2009 for a review), including price judgment tasks (Webb,
1961). For example, Lambert (1978) reported that the frequency with
which participants noticed a change in the price of a product did not
depend on the absolute price change, but on its ratio to the item’s price.
Dehaene and Marques (2002) have shown that, when participants were
asked to estimate prices for different items, the standard deviation of
price estimates across participants was directly proportional to the
mean price, such that the higher the price the larger the variability of
the estimates. Importantly, it has been demonstrated that the ratio of
the standard deviation to the mean, broadly known as Weber fraction,
is stable across different price magnitudes (Dehaene & Marques, 2002).
The Weber fraction is thus considered an index of an item’s price esti-
mation precision, with higher values indicating a “noisier” and less
precise estimation of the item’s price (Whalen, Gallistel, & Gelman,
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1999). As such, the Weber fraction for a given product, calculated
across participants, may be used as a proxy for the accuracy of the
numerical representation of that product’s price.

At a neural level, there is extensive evidence that the brain has
specialized networks to process numerical quantities, notably in the
intraparietal sulcus (IPS) and surrounding parietal regions (e.g.,
Butterworth, 2010; Cantlon et al., 2009; Cantlon, 2012; Cohen Kadosh,
Cohen Kadosh, Kass, Henik, & Goebel, 2007; Dehaene, Piazza, Pinel, &
Cohen, 2003; Dehaene, 2009; Emerson & Cantlon, 2014; Nieder &
Dehaene, 2009; Nieder & Miller, 2004; Piazza, Izard, Pinel, Le Bihan, &
Dehaene, 2004; Piazza, Pinel, Le Bihan, & Dehaene, 2007; Pinel, Piazza,
Le Bihan, & Dehaene, 2004; Rivera, Reiss, Eckert, & Menon, 2005).
Considered the core magnitude system, the IPS is systematically acti-
vated when quantity is manipulated, independently of notation (Piazza,
Mechelli, Price, & Butterworth, 2006; Pinel, Dehaene, Riviere, & Bihan,
2001), and for various tasks, including mental arithmetic (Klein, Nuerk,
Wood, Knops, & Willmes, 2009; Venkatraman, Ansari, & Chee, 2005),
number comparison (Ansari, Fugelsang, Dhital, & Venkatraman, 2006),
and digit detection (Eger, Sterzer, Russ, Giraud, & Kleinschmidt, 2003).
The reliable activation of the IPS and neighbouring superior and in-
ferior parietal lobules has been confirmed by various meta-analyses
targeting number processing in humans (Arsalidou & Taylor, 2011;
Sokolowski, Fias, Bosah Ononye, & Ansari, 2017; Sokolowski, Fias,
Mousa, & Ansari, 2017). Interestingly, neuroimaging data have shown a
weberian neural response in bilateral IPS. In an fMRI adaptation study,
participants repeatedly viewed the adaptation stimuli (sets with a fixed
number of dots), while deviant stimuli (sets of variable number of dots,
along a continuum, spanning from half to double the adaptation values)
were presented rarely. As predicted by Weber’s law, IPS activation for
deviant numerical stimuli was a direct function of the ratio between the
deviant and the adaptation number (Piazza et al., 2004). Given its role
in processing other numerical quantities, it is predictable that IPS also
sustains our ability to estimate the market price of goods.

In the present fMRI study, we investigated the neurofunctional
correlates of market price estimation, focusing on two numerical di-
mensions: the size and precision of the estimates. In line with previous
research that shows that larger magnitudes are represented in a fuzzier,
less exact manner (as evidenced by the size effect), we expect that
higher prices will be more difficult to estimate, as participants must
indicate a specific price within a range of values that are less dis-
criminable than lower prices. Moreover, the computation of prices may
also be influenced by factors that are extrinsic to numerical dimensions.
Among these, buying frequency and market price variability have been
shown to have an impact on market price estimation (Dehaene &
Marques, 2002; Giuliani, D’Anselmo, Tommasi, Brancucci & Pietroni,
2017; Marques & Dehaene, 2004). Specifically, it is harder to estimate
the price of products that are less frequently purchased as well as prices
with greater variation in the marketplace, as revealed by longer re-
sponse times (RTs) and greater variability across participants’ re-
sponses. Importantly, both buying frequency and market price varia-
bility are strongly related with price magnitude, since products with
higher prices tend to have lower buying frequency and greater market
price variability. As such, both the approximate nature of numerical
processing (with increasingly “noisier” representations as the values get
larger) and purchasing factors (notably, buying frequency and market
price variability) may increase the processing demands associated with
the estimation of higher prices. Greater cognitive control may be ne-
cessary in order to select a specific price among a range of subjectively
closer values and to manipulate multiple price representations asso-
ciated with greater market price variability. Areas engaged in cognitive
control, notably lateral and medial prefrontal cortex (PFC; Ansari et al.,
2006; Emerson & Cantlon, 2014; Rivera et al., 2005) would be expected
to demonstrate a positive correlation with increasing price estimates.
Thus, it is of interest to investigate price estimation effects in regions
outside the IPS.

Regarding the precision of the estimates, following previous studies,

we will use the Weber fraction as an index of the price estimation ac-
curacy. We hypothesize that a more precise representation of the price,
indexed by a smaller Weber fraction, will engage the IPS, the neural
signature of the mental representation of numbers.

2. Method

2.1. Participants

Twenty healthy participants (17 females, M=19.65 years, range:
19–29 years) took part in the study. All were right-handed, native
speakers of Portuguese, and had no history of neurological impairment
or head injury. They all gave informed written consent to the experi-
mental procedure, which was approved by the local ethics committee.
All participants were university students and received a course credit as
compensation for their participation.

2.2. Materials

Sixty-four everyday items were selected from a database of previous
studies (Dehaene & Marques, 2002; Marques & Dehaene, 2004). Items
denoted a broad range of products including groceries (e.g., biscuit
pack), toys (e.g., video game), apparel (e.g., sport shoes), household
items (e.g., light bulb), entertainment (e.g., movie ticket), electronics
(e.g., laptop computer), and transportation (e.g., bus ticket). Product
labels were made up of two words, presented in the written form, and
no number words were used.

The features of these items and their impact in the price estimation
task were evaluated in a separate behavioural study. In this study, a
group of 28 participants (16 females, M=23.96 years, range:
18–35 years), who did not take part in the fMRI study, provided their
market price judgments of each product, by typing the estimated price
on the keyboard. RTs were measured from the onset of the product
presentation to the onset of typing a response. After the price estimation
task, participants rated on a 7-point scale each item on several di-
mensions including familiarity (1= very unfamiliar to 7= very fa-
miliar), imageability (1= very low imageability to 7= very high im-
ageability), subjective liking (1=do not like 7= like very much),
market price variability (1= very low market price variability to
7= very high market price variability) and their own buying frequency
of the product (1= rarely ever buy to 7= buy very often). As it can be
seen in Table 1, the selected products presented relatively high levels of
familiarity (i.e., participants reported knowing the items, with no pro-
duct being rated as unfamiliar) and imageability (i.e., people reported
being able to imagine the product from the labels provided). For the
other dimensions, the full range of the scale was used, with items
varying in subjective liking, market price variability and buying fre-
quency.

Correlation analyses between these dimensions and the log

Table 1
Descriptive statistics of the items’ rating judgments and price estimation mea-
sures obtained in the behavioural study.

Mean (SD) Range

Rating judgments (7-point scales)
Familiarity 5.36 (1.26) 2.57–6.89
Imageability 6.33 (0.67) 3.50–6.86
Subjective liking 4.86 (1.05) 2.18–6.86
Market price variability 3.35 (1.26) 1.29–6.36
Buying frequency 3.26 (1.18) 1.04–5.32

Price estimation measures
Price estimates (in €) 25.87 (81.66) 0.13–530
Weber fraction 0.49 (0.21) 0.15–1.23
RT (in ms) 4185 (629) 3217–6286
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transformation of the estimated prices1 confirmed that mean price es-
timate correlated negatively with product familiarity (Spearman’s ρ =
−0.314, p= .011), product imageability (ρ = −0.351, p= .004) and
mean buying frequency (ρ = −0.470, p < .001), while showing a
positive correlation with market price variability (ρ = 0.687,
p < .001) and no significant relation with the subjective liking of the
goods (ρ = −0.012, p= .924). This indicates that products estimated
as having higher prices were less familiar, had lower imageability,
lower buying frequency and greater market price variation. A regres-
sion analysis between the log mean and the log standard deviation of
the price estimates across participants showed strict linearity, with an
estimated slope coefficient close to 1 (b=0.993, t(62) = 31.68,
p < .001). The Weber fraction (calculated across participants as the
ratio of the standard deviation of price estimates by the mean of price
estimates for each item) did not show a systematic relation with price
magnitude (r=−0.029, p= .821), suggesting that the Weber fraction
is independent of price magnitude and provides a good index of an
item’s price estimation accuracy. Weber fraction only showed a modest
but significant correlation with mean buying frequency rating (Spear-
man’s ρ = −0.277, p= .027). Hence, in our data set, as in previous
studies (Dehaene & Marques, 2002), items that were bought more fre-
quently had a smaller Weber fraction, i.e., a greater precision in the
price estimate. In spite of this correlation, buying frequency alone did
not explain the linear increase of the standard deviation with the mean
price. In a hierarchical regression analysis, even after controlling the
effects of frequency, the standard deviation of the estimated price re-
mained linearly correlated with the mean price (b=0.946, t(62) =
25.44, p < .001). Longer RTs were associated with higher price esti-
mates (r=0.324, p= .009), higher market price variations (Spear-
man’s ρ = 0.342, p= .006) and lower buying frequency (Spearman’s ρ
= −0.254, p= .043).

Additionally, we obtained a more objective measure of the average
retail price of each product as well as of its variability, by collecting the
prices of these items from online and traditional stores, with an average
of twenty prices per item. This allowed us to ensure that for this set of
products people’s estimates of market price and judgments of market
price variability were realistic reflections of the actual prices. Overall,
mean price obtained from stores was 34.25€ (SD=109.84€, range:
0.2–698€). Mean prices estimated by the participants in the beha-
vioural study and the mean prices obtained from stores were well
correlated (r=0.976, p < .001). Participants’ price variability ratings
also correlated with the price variability determined using the log of the
standard deviation of the prices collected on stores (Spearman’s ρ =
0.593, p < .001), confirming that people’s rating judgment was a good
indicator of market price variability.

2.3. Procedure

While in the scanner, participants were asked to silently read each
label and mentally estimate the market price of the products. We chose
this task (rather than a more explicit task such as the one used in the
behavioural study) in order to avoid movement artefacts (e.g., asso-
ciated with typing the estimates or with vocal responses). Each trial
began with the presentation of a fixation-cross (500ms), followed by
the presentation of the item label for 4000ms. During this time parti-
cipants had to silently estimate the item’s price and press a button with
their left index finger when a decision had been made. They were en-
couraged to be as precise and quick as possible. Trials were separated
by a variable inter-stimulus interval (1500, 2000, 2500 and 3000ms) in

order to optimize statistical efficiency (Dale, 1999). Presentation and
timing of stimuli were controlled using EPrime software (www.psnet.
com).

After the scanning session, participants were given a questionnaire
in which a list of the same items was presented and they were asked to
indicate the price estimate for each item. Participants also rated their
own buying frequency and the retail price variability of each item,
using a 7-point scale, since these dimensions significantly impacted
performance (price estimates, Weber fraction and RTs) as revealed by
the behavioural study.

2.4. fMRI acquisition and analysis

Scanning was conducted at Sociedade Portuguesa de Ressonância
Magnética on a 3-Tesla Philips MR system (Philips Medical Systems,
Best, NL) using a standard head coil. Functional data were acquired by
using an echo-planar sequence (TR=2000ms, 34 bottom-up inter-
leaved slices parallel to the AC-PC line, 3 mm thick, interslice gap of
0.5 mm, 2mm×2mm×3mm in-plane resolution, FOV=23 cm
×23 cm, matrix size= 116×115). Acquisition covered the entire
brain. Before functional data collection, three dummy volumes were
discarded to allow for T1 equilibrium. High-resolution T1-weighted
anatomical images were acquired for visualization.

Preprocessing and statistical analysis of the data were performed
using Statistical Parametric Mapping software (SPM8, Wellcome
Institute of Cognitive Neurology, www.fil.ion.ucl.ac.uk), implemented
in Matlab (Mathworks Inc., Sherborn MA, USA). Slice acquisition
timing was corrected by resampling all slices in time relative to the
middle slice collected, followed by rigid body motion correction.
Functional data were spatially normalized to a canonical echo-planar
imaging template using a 12-parameter affine and nonlinear transfor-
mation, and then spatially smoothed with an 8mm Gaussian kernel.

We performed a correlation analysis to examine the regions that
showed modulation in activity as a function of different variables of
interest. The model contained four regressors: one regressor modelling
the log transformed price estimate of each participant obtained in the
post-scan questionnaire; one regressor for the Weber fraction, calcu-
lated across participants as the ratio of the standard deviation of price
estimates by the mean of price estimates for each item (following
Dehaene & Marques, 2002); and two regressors modelling the in-
dividual ratings, one for the buying frequency and the other for market
price variability, both derived from the post-scan questionnaire. In this
model, trials were entered as events, and price estimate, Weber frac-
tion, buying frequency and price variability were entered as parametric
modulators with linear expansion for each item. The four modulators
were serially orthogonalized in order to minimize intercorrelation be-
tween measures.

Data for each participant were modelled with the general linear
model using the canonical hemodynamic response function (HRF).
Analysis was performed for each subject and results were combined into
a group random effects analysis. Results were thresholded at p < .001
uncorrected at voxel level and only clusters that survived p < .05 FWE
(family-wise error) corrected for multiple comparisons across the entire
brain were considered significant. All coordinates reported are in MNI
space. The MRIcron package was used for visualizing brain images
(Rorden, Karnath, & Bonilha, 2007).

3. Results

3.1. Behavioural data

Fig. 1 illustrates the distribution of the estimated prices in the post-
scan questionnaire. As most products were everyday items, most of the
estimated prices were relatively low, i.e., less than 10€. On average,
mean price estimate was 29.51€ (SD=101.15€, range: 0.1–603€).
These estimates were very close to those obtained in the behavioural

1 Similarly to previous studies (e.g., Dehaene & Marques, 2002), here and in
subsequent analyses we used the log transformation values because the dis-
tribution of the price estimates was positively skewed (i.e., there were more
prices on the low-end side than on the high-end side), while the log data pre-
sented a distribution close to normal.
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study, with Pearson correlation revealing a strong and significant re-
lation between the estimates obtained in the two studies (r=0.986,
p < .001). The estimates provided in the post-scan questionnaire were
also strongly correlated with the mean prices obtained from stores
(r=0.981, p < .001), demonstrating that participants’ estimates were
realistic reflections of market prices.

Item-based analyses on the relationship between the log mean price
estimate and the log standard deviation showed strict linearity. The log
sdi – log mi regression was highly significant, b=0.995, t(62) = 28.07,
p < .001, yielding a very precise estimate of the slope, which was close
to 1 (Fig. 2A). Thus, the standard deviation of the price estimates in-
creased in direct proportion to the price being estimated, so that larger
variability across participants’ responses was found for increasing
prices. Plotting the Weber fraction (wi= sdi/mi) for each item against
its mean price showed that although Weber fraction varied across items
(M=0.521, SD=0.289, range: 0.12–1.58), no systematic relation
with price magnitude was found (r=−0.11, p= .386). This shows
that mean price and Weber fraction are independent and that the we-
berian relation provides a good index of an item’s price estimation
accuracy (Fig. 2B).

Concerning the rating judgments (in a 7 point scale) provided in the
post-scan questionnaire, mean buying frequency was 2.91 (SD=1.02)
and mean retail price variability was 3.28 (SD=1.11). In line with the
behavioural study, there was a significant association between the
mean price estimate and the mean buying frequency rating (Spearman’s
ρ = −0.497, p < .001), indicating that products estimated as having
higher prices had lower buying frequency. Mean price estimate also
correlated with the mean market price variability rating (Spearman’s ρ
= 0.727, p < .001), denoting that products with higher estimation
prices had greater market price variation. When considering the Weber
fraction, results showed no significant associations with mean buying
frequency rating (Spearman’s ρ = −0.196, p= .121) and mean market
price variability (Spearman’s ρ = 0.130, p= .305).

We also examined the RTs in the price estimation task carried out in
the scanner. It is worth noting that in the fMRI task, RTs were a crude
measure of the price estimation time, as participants had to mentally
estimate the price and then press a button once a decision had been
reached. Despite this limitation, on average, mean RT was 2077ms
(SD=605ms, range: 814–3775ms). RTs showed a positive correlation
with mean price estimate, with longer RTs for higher price estimates

(r=0.295, p= .018), but no significant correlation with the Weber
fraction (r=−0.076, p= .551). In addition, RTs correlated negatively
with buying frequency (ρ = −0.411, p= .001) and had a marginal
positive relation with market price variability (ρ = 0.214, p= .090).
Even though RTs in the scanner were shorter than those observed in the
behavioural study, presumably due to differences in the type of motor
response required and to the lack of time limit to respond in the be-
havioural study, RTs in the two studies were correlated (r=0.370,
p= .003), suggesting that participants were responding in a similar
manner. Despite not having an overt response in the scanner, altogether
these results suggest that participants were performing the expected
task.

3.2. fMRI data

Our main goal was to explore the neural underpinnings of market
price estimation by focusing on two numerical dimensions: the size and
the precision of the estimates. Increasing price estimates showed in-
creasing activity in L medial PFC encompassing the dorsomedial and
the ventromedial PFC, and the ACC. There was also increasing activity
in L lateral PFC, extending to L temporal pole and a cluster in the L
inferior temporal gyrus (Fig. 3A & Table 2). In contrast, decreasing
price estimates exhibited increasing activation in R precuneus
(Table 2).

Turning to the precision of the estimates, we found that decreasing

Fig. 1. Distribution of the estimated prices in the post-scan questionnaire.

Fig. 2. Scalar variability and Weber’s law in price estimation. (A) Linear re-
gression between the mean and the standard deviation of the estimated prices
across 64 different products on a logarithmic scale. (B) Approximate stability of
the Weber fraction (ratio of standard deviation and mean price) across different
magnitudes.
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Weber fraction yielded increased activation in a large cluster with peak
in the L middle temporal gyrus, extending to the L IPS, L inferior and
superior parietal lobule, angular gyrus and precuneus. There was also
significant activation in the R superior parietal lobule and R angular
gyrus. Additionally, there was increased activation in bilateral para-
hippocampal gyrus, bilateral inferior temporal gyrus including the fu-
siform area, and L superior frontal gyrus (Fig. 3B and Table 3). Con-
versely, increasing Weber fraction was accompanied by increased R
inferior frontal cortex activation (Table 3). There were no regions

significantly activated as a function of buying frequency and market
price variability.

To investigate if the IPS activation overlapped with the findings of

Fig. 3. Differential effects of size and precision of the price estimates in the whole brain analysis. (A) Regions demonstrating increase of response to increasing price
estimates. (B) Regions exhibiting increased activation to decreasing Weber fraction. Activations are overlaid on a canonical brain and thresholded at p < .001
uncorrected at voxel level and p < .05 FWE corrected for multiple comparisons at cluster level.

Table 2
Whole brain effects of price estimation. (A) Regions demonstrating increases of
response to increasing price estimates. (B) Regions demonstrating increases of
response to decreasing price estimates. Results were thresholded at p < .001
uncorrected at voxel level and p < .05 FWE corrected for multiple comparisons
at cluster level. The highest peak from each cluster is shown.

Region BA No voxels Z-score MNI coordinates

x y z

(A) Increasing price estimates
L inferior temporal gyrus 21 120 4.77 −54 −2 −30
L lateral orbitofrontal cortex 47 474 4.70 −44 32 −12
L dorsomedial prefrontal cortex 10 823 4.43 −6 56 32
L ventromedial prefrontal cortex 10 161 3.19 −14 56 6

(B) Decreasing price estimates
R precuneus 7 148 4.13 8 −56 52

Table 3
Whole brain effects of Weber fraction. (A) Regions demonstrating increases of
response to increasing Weber fraction. (B) Regions demonstrating increases of
response to decreasing Weber fraction. Results were thresholded at p < .001
uncorrected at voxel level and p < .05 FWE corrected for multiple comparisons
at cluster level. The highest peak from each cluster is shown. For the largest
cluster, the highest three peaks are shown on subsequent lines.

Region BA No voxels Z-score MNI coordinates

x y z

(A) Increasing Weber fraction
R inferior frontal gyrus 48 83 4.11 28 32 12

(B) Decreasing Weber fraction
L middle temporal gyrus 21 8424 5.71 −52 −32 0
L precuneus −23 – 5.64 −12 −58 34
L inferior parietal lobule 7 – 5.61 −32 −66 42
L medial fusiform gyrus 37 325 5.19 −26 −40 −10
R parahippocampal gyrus 36 165 5.07 26 −12 −26
R superior parietal lobule 7 305 4.71 34 −42 58
R angular gyrus 40 739 4.64 32 −52 38
Cerebellum – 598 4.55 26 −64 −28
R inferior temporal gyrus 20 160 4.35 60 −42 −12
R inferior temporal gyrus 20 95 4.21 50 −4 −34
R superior frontal gyrus 8 181 3.98 −32 12 54
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the numerical processing literature, we conducted an independent re-
gion of interest (ROI) analysis. To this end, we constructed a spherical
10 mm ROI located around the peak coordinate at [28−56 49]2 re-
ported in a recent meta-analysis of number processing in humans
(Sokolowski, Fias, Mousa, et al., 2017). The ROI covered the IPS and
portions of the inferior and superior parietal lobule. In this ROI ana-
lysis, activations are considered significant for p svc < .05 (small vo-
lume correction as implemented in SPM8, i.e., FWE correction within
the search volume). Results revealed a significant increase of activation
in the ROI for decreasing Weber fraction (Fig. 4 and Table 4). There
were no significant activations for increasing Weber fraction and no
effects of price estimates in this ROI.

4. Discussion

This study investigated how numerical processing modulates the
neural bases of the estimation of the market price of goods. We built on
previous research on numerical cognition that has demonstrated that
the processing of magnitudes is approximate and follows Weber’s law.

Increasing price estimates were associated with longer RTs, greater
variability across participants’ responses, and increased activation in L
medial and lateral PFC. This size of the estimates effect suggests that, as
the estimated price increases, the cognitive and neural demands in-
volved also increase. Medial PFC, including the dorsomedial PFC and
dorsal ACC, has been implicated in various functions, including cog-
nitive control (Shenhav, Botvinick, & Cohen, 2013; Venkatraman,
Rosati, Taren, & Huettel, 2009), conflict monitoring (Botvinick, Braver,
Barch, Carter, & Cohen, 2001; Brown & Braver, 2005; Kerns et al.,
2004), error detection (van Veen, Holroyd, Cohen, Stenger, & Carter,
2004), and attention (for a review see Euston, Gruber, & McNaughton,
2012). Our data suggest that these general functions may be

increasingly recruited as price estimates get higher. As proposed at the
outset, both the nature of the numerical representations and purchasing
factors may give rise to these effects. Studies on numerical cognition
have firmly established that numerical representations become less
discriminable as the absolute magnitude increases, due to increasingly
overlapping (i.e., “noisier”) representations (Cantlon, 2012; Dehaene,
Molko, Cohen, & Wilson, 2004; Piazza et al., 2004). The higher the
price the more taxing it would be to estimate a specific price as higher
values are represented more closely than lower ones. In addition, pro-
ducts judged as having higher prices had lower buying frequency and
larger market price variability, similarly to prior studies (Dehaene &
Marques, 2002; Giuliani et al., 2017). These purchasing variables as-
sociated with higher prices may hence require the engagement of these
cognitive functions, as participants must indicate a specific price among
of set of alternatives without clear evidence of which one was the most
adequate.

Medial PFC has also been implicated in other cognitive functions, as
highlighted by the review of Euston et al. (2012). Of relevance for the
current work is the proposal that this region is tied to the computation
of the subjective value of the goods, i.e., the value that an individual
places on an item based on his or her own preferences and goals
(Clithero & Rangel, 2014; Hare, Camerer, & Rangel, 2009; Karmarkar,
Shiv, & Knutson, 2015; Knutson, Rick, Wimmer, Prelec, & Loewenstein,
2007; Smith et al., 2010). In the current study, it remains undetermined
whether the subjective value attributed to the items have influenced the
retail price estimations. If this is the case, then the medial PFC activity
observed for higher market price estimations, albeit more superior than
the regions reported in subjective valuation studies, could reflect, at
least in part, higher subjective valuation of the items. Alternatively, it
has been proposed that medial PFC is modulated by the stimulus’ sal-
iency (Litt, Plassmann, Shiv, & Rangel, 2011). Items that are seen as
more important or more arousing allocate more attentional and moti-
vational processes, which in turn recruit the medial PFC (see also
Kouneither, Charron, & Koechlin, 2009 for another perspective on the
role of this region in monitoring motivationally salient events). Pro-
ducts that are judged as being more expensive may also attract more
attention and lead to higher levels of arousal. The observed activation
in medial PFC may therefore relate to saliency signals. A limitation of
the current study is that it did not include the necessary controls to test
these and other hypotheses directly, and so the specific nature of the
PFC activity in estimating higher prices remains uncertain. Never-
theless, the finding of activation outside the IPS in a task that requires
the estimation of numerical quantities points to the role of other re-
gions, notably the PFC, in the processing of magnitudes (Ansari et al.,
2006; Emerson & Cantlon, 2014; Rivera et al., 2005), at least in the case
of prices.

Turning to the Weber fraction effects, our behavioural results
showed that price estimation followed Weber’s law: the standard de-
viation of price estimates was directly proportional to the mean price.
This is in line with extensive research on numerical processing (2007;
Ansari, 2008; Cantlon et al., 2009; Dehaene et al., 2003; Piazza et al.,
2004), and replicates previous work on price estimation, confirming
that price processing presents the signature property of the internal
representation of numbers (Dehaene & Marques, 2002; Marques &
Dehaene, 2004; Whalen et al., 1999). Additionally, we found that the
neural regions that supported price estimation overlapped with those
that mediate numerical processing. The bilateral IPS and adjacent
parietal regions were increasingly engaged as the accuracy in price
estimation increased (i.e., as the Weber fraction decreased). The ROI
analysis carried out on the L parietal cortex, defined independently on
the basis of a recent meta-analysis of number processing in humans
(Sokolowski, Fias, Mousa, et al., 2017), confirmed the extensive overlap
between the activation found in our task and that observed in numerical
processing tasks. This suggests that the neural signature of the Weber
fraction, previously observed for other magnitudes, such as numer-
osities, size, time and luminance (Clanton et al., 2009; Pinel et al.,

Fig. 4. Regions exhibiting increased activation to decreasing Weber fraction in
L parietal cortex (in green). The mask used in the ROI analysis is represented in
dark blue (10-mm sphere around the peak activation at [−28−56 49] from
Sokolowski, Fias, Mousa, et al., 2017). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

Table 4
Increases of response to decreasing Weber fraction in a priori region of interest
in the L parietal cortex. Results were thresholded at p svc < .05 (small volume
correction as implemented in SPM8, i.e., FWE correction within the search
volume). The highest peak within the ROI is shown.

Region BA No voxels Z-score MNI coordinates

x y z

L inferior parietal lobule 7 359 5.16 −32 −62 44

2 The Talairach coordinates reported in this study were converted into MNI
using the Lancaster transformation tool (icbm2tal; Lancaster et al., 2007).
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2004), extends to price judgments with IPS tracking the accuracy of the
numerical representation of prices.

Lastly, we did not find specific activations as a function of the
buying frequency and market price variability ratings. As mentioned
above, these ratings were significantly correlated with the price esti-
mates: buying frequency showed a negative correlation while market
price variability presented a positive correlation with the mean price
estimates. It is thereby possible that any neural effects associated with
variations in these dimensions were observed in the price estimate re-
sults.3

In summary, our findings provide evidence on how people estimate
the market price of products. Activation in medial PFC correlated with
the size of the estimates, while activity in the IPS and surrounding
parietal lobules reflected the precision of those estimates. The results
highlight the role of numerical dimensions in price cognition.
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